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ABSTRACT

The role of forces produced by the musculotendon units in the stress develop-

ment of the long bones during gait has not been fullyanalysed. It is well known

that the musculotendons act as actuators producing the joint torques which drive

the body. Although the joint torques required to perform certain motor tasks can

be recovered through a kinematic analysis, it remains a dii]_cult problem to deter-

mine the actual forces produced by each muscle that resulted in these torques. As

a consequence, few studies have focused on the role of individual muscles in the

development of stress in the bone.

This study takes a control theoretic approach to the problem. A seven-link,

eight degrees of freedom model of the body is controlled by various muscle groups

on each leg to simulate gait. The simulations incorporate Hill-type models of

muscles with activation and contraction dynamics controlled through neural in-

puts. This direct approach allows one to know the exact muscle forces exerted by

each musculotendon throughout the gait cycle as well the joint torques and reac-

tion forces at the ankle and knee. Stress and strain computed by finite element

analysis on skeletal members will be related to these derived loading conditions.

Thus the role of mnsculoskeletal dynamics and neuromuscular control in the stress

development of the tibia during gait can be analyzed.
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CHAPTER I

INTRODUCTION

The study of stress development in bone is an active area of research which

is relevant to the prediction and prevention of injury. Stress fractures have been

a recurring problem with military recruits during intense training and are now

being seen more frequently in civilian athletes (Sharkey et al., 1995). The need

to better understand the development of these fractures is a driving force behind

this research. While the problems being addressed by this research are typically

thought to reside in the fields of biomechanics or bioengineering, mathematics is

central to the formulation and solution of these problems. In particular, control

theory, fracture mechanics and numerical analysis are especially relevant in the

approach developed in this investigation.

Before issues such as failure of bone can be addressed, one needs to have a

good understanding of the stress fields incurred in bone throughout tasks which

are deemed normal. The integrity of the calculated stress fields during a task will

ultimately depend not only on the accuracy of the model describing the material

properties of bone but also on the proper interpretation and calculation of the

loading conditions to which the bone is subjected. Defining the loading conditions

which accurately reflect the state of a human bone during in vivo activity is a

challenge due to the ethical limitations inherent in working with human subjects.

The practicality of utilizing strain gauges bonded to the bone and other such

monitoring devices is restricted due to the risk of infection and discomfort imposed

on the subject. Thus non-evasive techniques are highly recommended.

One of the goals of this research is to develop an analytical, predictive method

for acquiring appropriate dynamic loading conditions for the long bones of humans

throughout the gait cycle. Such an analytical model would provide information

that might otherwise be obtained only through evasive procedures. A promising

approach to this problem lies in the forward analysis of a mathematical model

capable of simulating normal gait which incorporates the interaction of the ac-

tive and passive structures of the body. Muscles are the active force producing

components in the body while tendons, ligaments and bones are representative of
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the passive structures. Although anatomic considerations imply the importance

of considering the interaction between these structures, most studies in the past

have concentrated on the behavior of these elements in isolation. Studies have

shown that ligaments and bones behave differently in isolation by storing more

energy, requiring more force to rupture, and sust_g increased elongation as the

speed of loading is increased (Wainwright eta/., 1976). It is also hypothesized that

stress fractures in bone represent either a failure of fatigued muscles to absorb im-

pact (Markey, 1989) or are the result of uncoordinated muscular action (Lanyon,

1984). Thus a reliable mathematical model must incorporate the combined ef-

fects of the muscle-tendon-ligament-bone complex by considering both active and

passive structures as biological control systems.

Deriving loading conditions from a simulation is a relatively new procedure

and a challenging modeling problem. Chapter II will emphasize advantages of this

method. Chapters III and IV are devoted to the modeling of musculotendons. A

great deal of importance is placed on the proper modeling of the musculotendons

for two reasons. First, since the musculotendons are known to actuate the body,

any model of gait which hopes to mimic nature must include a fairly accurate

description of muscle. Secondly, it is a contention of this research that the muscu-

lotendons play a major role in defining appropriate loading conditions of the bone.

Since the validity of the loading conditions relies on the ability of the model to

simulate normal gait as accurately as possible, Chapters V and VI will concentrate

on the development of the musculoskeletal model, the incorporation of the mus-

culotendon actuators, and the implementation of the simulations. Thus a major

portion of this dissertation is devoted to defining and validating a model through

which appropriate loading conditions on can be derived.

The last portion of this dissertation will involve a finite element analysis of the

tibia using the derived loading conditions. The effects of musculature in the load-

ing conditions will be emphasized. These computations demonstrate how loading

conditions from a forward analysis may be implemented in a stress analysis. More

importantly, the results will indicate that the incorporation of both active and

passive structures of the body are essential in _curately predicting the state of

stress in the long bones of the lower extremities.



CHAPTER II

JUSTIFICATION OF THE APPROACH

2.1 Introduction

To study the stressand strain distributionon the long bones, one must know

the loading conditions. The relevant staticloading conditions used in the past

include joint reaction forces,joint torques, bending moments, and in some cases

estimations of individual muscle forces.The question to be addressed in thissection

is what type of analysis provides a good methodology for studying the effectsof

differentloading conditions associated with various forms of gait.

Typically the body ismodeled as a multi-linkobject in this sort of analysis. If

the model has n degrees of freedom (dof),then the equations of motion governing

this object can be written in the following simple form

M0 = T+ V + G+ E (2.1)

where 0 is a n x 1 vector containing segmental acceleration, M is the n x n

"mass matrix," and T, V, G, E are n x 1 vectors representing the internal segmental

torques, inertial, gravitational, and external forces acting on the body. Once these

equations are derived, there are essentially two approaches in finding the loading

conditions derived from a certain motor task: an inverse-dynamic approach or a

direct-dynamic approach.

2.2 Inverse-Dynamics

Inverse-dynamics is an approach that proceeds in a backwards manner, taking

observed motions and then deriving from these motions the joint torques respon-

sible. Thus motion acts as the input in this method and joint torques are the

output. It is convenient to write equation (2.1) in the following form

T = (M0- V- G- E)

to emphasize the dependence of T on the body trajectories. This approach re-

quires experimental, kinematic data, i.e., ground reaction forces, mass and inertial

3



4

characteristics of segments,and observedmotions. If these kinematic variables are

assumed to be known functions of time, the set of differential equations of motion

becomes algebraic and joint torques are easily computed (King, 1984).

Although joint torques are easily derived, it is a nontrivial matter to discern the

distribution of force among the muscles from this data. As Davy and Audu (1987)

stated, "There are typically more unknown forces than can be determined in the

equipollence relations between resultant and individual member force (Crownin-

shield, 1978; Pearod et a/.,1974), so muscle forces can not be determined directly

from mechanical relations alone." This is referred to as the "redundancy problem."

Typically the muscle set is reduced by grouping muscles of similar function (Pa-

triarco, 1981) and by using EMG activity as a guide in determining which muscles

were used during the motor task (King, 1984; Biewener, 1992). If the problem is

still indeterminate, then an optimization scheme is usually utilized; however the

selection of appropriate optimization criterion or the construction of proper cost

functions remains disputed (King, 1984). Some cost functions which have been

used in the past include the sum of muscle forces (Seireg and Azvikar, 1973; Pen-

rod et at, 1974), the sum of muscle stresses or a related quantity (Crowninshield,

1978; Crowninshield and Brand, 1981), and energy expenditure rate (Hardt, 1978;

Patriarco et al., 1978). All the works cited above included no excitation nor con-

traction dynamics of the muscles, and thus are referred to as static optimization

after Hardt(1978). Depending on the form of the cost function, the optimiza-

tion problem is solved via linear programming, gradient-restoration algorithms, or

another appropriate method (Davy and Audu, 1987).

There are several shortcomings associated with static optimization. These

methods neglect the role of muscle dynamics and assume that muscle actions

at any instant are independent of action at all other points (Davy and Audu,

1987). Neglecting muscle dynamics often results in muscle force histories which

are discontinuous in time (Yamaguchi, 1990). Furthermore, the results from static

optimization are highly dependent on the cost function selected which sometimes

predict physiologically unrealistic results (Hardt, 1978; Seireg and Arvikar, 1975).

Adding physiological constraint equations can help prevent some of these unrealis-

tic results (Pierrynowski and Morrison, 1985). Another drawback to this method is



that the predictions arehard to validate, sinceinvasive techniquessuch as inserting

force transducers are not applicable in a human analysis. Regardless of the short-

comings, static optimization remains a frequently used tool in the determination

of muscle forces.

In summary although inverse-dynamics is a valuable tool, it is limited in several

respects. First, the determination of muscle force distribution from joint torques

remains difficult, and the only validation of such a distribution is correlation with

EMG recordings. Secondly the results from inverse-dynamics are highly depen-

dent on accurate determination of joint angles and the calculation of joint torques

(Patriarco et al., 1981), but kinematic measu_ments are not always able to dis-

cern subtle movements which might be critical (Pandy and Berme, 1987). Another

limitation associated with this method is that it is not predictive in nature, that

is, one is limited to studying motion which is actually produced by the subjects

being monitored. Additional drawbacks associated with inverse-dynamics can be

found in Hardt (1978).

2.3 Direct-Dynamics

In a forward or direct-dynamical analysis the joint torques are the inputs and

the body motion is the output. Thus equation (2.1) is rewritten in the following

form to emphasize this relationship

_= M-lIT -{- V + G ÷ E].

It is important to realize what produces these joint torques. Joint torques are the

accumulation of internal body forces such as ligaments, joint constraints, and of

course, muscle forces. Muscles are the actuator in this system. Thus the true input

into the system is indeed neural input. This neural input drives the muscles, and

then the torques are an accumulation of both the passive and active structures

which stabilize the body and propel it forward. Therefore controls for each muscle

are needed to drive the system and the "redundancy problem" is revisited. Some

type of optimization technique must again be utilized (Yamaguchi, 1992; Davy and

Audu, 1987; Hatze, 1976; He, 1988; Levine et al., 1983).
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Although optim_ation techniques must stillbe utili_.edin this forward analy-

sis,the optimization techniques employed are typically dynamic, meaning muscle

dynamics are incorporated into the model. Muscle dynamics and the equations of

motion governing the body are necessarilycoupled. Ifa certain motion, likegait,is

to be simulated, then the cost function usually involves both a trazking error term

and a term influencing the distribution of muscle force,like energy consumption

(Davy and Audu, 1987). Once controls are achieved, then the system of differen-

tialequations for the body and the system of differentialequations governing the

dynamics of each muscle group can be integrated forward in time to obtain the

motion trajectories.Thus in a sense a direct-dynamic analysis isself-validatingin

that the controls specifieddo indeed resultin the observed motion.

In this research, we choose to use a direct-dynamic approach for several rea-

sons. When using a forward analysis,the loading conditions needed for a stress

analysis of bone, i.e.,joint torques, joint bending moments, joint reaction forces

and individual muscle forces can be instantaneously derived as the model pro-

gresses forward in time. Since any motion is possible in a forward analysis, we

are capable of generating an infiniteamount of data. In addition, abnormalities

in muscle function can be incorporated into the model. Thus fatigue or improper

innervation in the musculotendon complex can be studied and the effectsof such

conditions on the integrityof the skeletalsystem can be quantified. In essence,

we believe that a forward analysis provides the means to study a broader scope of

loading conditions.



CHAPTER III

MUSCULOTENDON COMPLEX

As stated before, muscle is the active force producing organ in the body. Any

forward analysis of gait relying on neural input as the control must incorporate a

fairly accurate model of muscle into the simulation. Thus a working understanding

of the basic function of muscle is fundamental to this research. Before describing

a muscle model appropriate for gait simulation, some of the basic properties of the

musculotendon complex should be discussed. For a more detailed description of

muscle properties the reader is referred to McMahon's book,"MuseIes, Reflexes,

and Locomotion," or Zajac's Review, "Muscle and Tendon: Properties, Model,

Scaling, and Application to Biomechanics and Motor Control."

3.1 Architecture of Musculotendon

Muscles are connected to the bone through connective tissues called tendons

and can be oriented to the tendon in a parallel or oblique fashion. These muscle

types are referred to as parallel or pennate muscles respectively. See Figure 3.1

for the configuration of pennate muscles. All muscles in this study are treated as

pennate muscles where a, the pennation angle, quantifies the pennation for eaz_h

muscle group. Although pennation angle varies depending on the state of contrac-

tion, the volume of muscle remains constant, a fact confirmed by Swammerdam in

the 1660's (McMahon, 1984). The proximal atta_ment of the musculotendon unit

to the bone is called the origin while the distal attachment is called the insertion.

The length of the musculotendon which is dependent upon body configuration is

defined as the length along the bones from origin to insertion.

The organization of muscle can be studied at various levels. Muscle generally

refers to a bundle of muscle fibers which act in parallel. A single muscle fiber has

a banded appearance. These bands divide the fiber into a series of sacromeres,

the'smallest functional unit of a muscle (McMahon, 1984). This striated appear-

ance is the result of the different refractive properties of the A and I bands in

the sacromeres (see Figure 3.2). At a microscopic level the sacromeres are seen

7
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Figure 3.1: Geometry of Pennated Muscle. When muscles contract, they maintain

a constant volume, and become more pennated. [Yamaguchi]

to be a collection of Myosin and F-actin myofilaments, referred to as thick and

thin filament respectively. This microscopic architecture will be relevant when a

theoretical explanation of force generation is described.

All levels of muscle structure down to the sacromeres behave in a homogeneous

fashion. Because of this homogeneity, each level can be viewed functionally as a

scaled version of another level. Each sacromere has the same relaxed length, and so

the length of the muscle unit, L m, is a measure of how many sacromeres constitute

one muscle fiber. Since each sacromere produces the same amount of force Fo

under similar circumstances and muscle fibers act in parallel, total muscle force

F"* should be a scaled version of F,. The scale factor between the sacromere and

the muscle unit is generally proportional to the mean cross-sectional area of that

muscle unit, defined as weight in grams divided by length in centimeters (Zajac,

 989).

3.2 Functional Properties of the Musculotendon

3.2.1 Force-Length Properties of Muscle

Muscle force is easily measured at various lengths under isometric conditions

to produce force-length relationships. The curve produced when muscle is not

stimulated is referred to as the passive force-length curve, fp(L"_). When muscle

is fully activated, the curve that results is called the tetanized curve and must
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Figure 3.2: Organization of striated muscle. [McMahon]
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Fu A a(t)= I

t"

B

a(t) =0.5

Figure 3.3: Isometric Force-Length Relation for Muscle: (A) Full activation, (B)
Active force scales with activation but passive is force is unaffected. [Zajac]

be the result of both passive and active contributions. The difference in these

two curves is referred to as the active force-length relation, f_(L"_). The length

at which the maximum active muscle force, Fo, is developed is called the optimal

muscle length, Lo. See Figure 3.3 for the qualitative nature of these curves. At

less than full activation, the force-length dependence is obtained by scaling the

fully activated fl curve (Winter, 1987; Zajac, 1989). The reason for the passive

behavior is easily seen as just a consequence of the elastic material properties of

muscle and is independent of activation.

A theoretical explanation for the active f_ relation is called the Sliding Filament

Theory. This model was developed simultaneously by H. Huxley and A. Huxley

(no relation) in the 1950's (McMahon, 1984), and is based on the microscopic

nature of muscle (refer to Figure 3.2). It was proposed that during contraction the

thick and thin filaments in sacromeres slide past each other. Force is generated

in the crossbridges that occur between actin and myosin during the overlap of
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Figure 3.4: Active Tension-Length Curve for Muscles. [McMahon]

these filaments. Crossbridges can only occur in the presence of Ca +. The calcium

concentration is a byproduct of the activation level which explains why the fl

relation is scaled by activation. These crossbridges occur, rotate to move the

filaments closer and then detach (McMahon, 1984). A. Huxley later proposed a

mathematical model of the Sliding Filament Theory based on the probability of a

crossbridge occurring. This theory properly explained the ft curve (see Figure 3.4)

and why force is only generated in a nominal region, .5Lo < L" < 1.SLo (Gordon

et al., 1966). This model has also been shown to predict many of the other features

of muscle, for instance the force-velocity relation.

3.2.2 Force-Velocity Properties of Muscle

Active muscle force is also dependent on muscle velocity. When a muscle ac-

tively shortens (concentric contraction), it produces less force than it would under

isometric conditions. A.V. Hill (1938) was the first to quantify this result with an
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empiricalhyperbolicrelationship,

(F + a)(v + b)= (fo+ a)b. (3.1)

So max_mM active force is achieved when the velocity of the muscle, v m, is zero,

and the velocity (when L" = Lo) at which active force is zero is called m:_,rlmnm

speed of shortening, Vo. Maximum speed of shortening is the limit to how fast

a sn je unloaded crossbridge in the sacromere of a specific muscles can shorten

(McMahon, 1984). The quickness of a crossbridge shortening determines whether

muscles are classified as fast or slow.

In contrast to shortening, when a muscle is actively lengthening it is able to

deliver forces above isometric forces. This relationship is not an extension of Hill's

equation to the negative region, as might be expected. In fact, Katz discovered

in 1939 that the slope of the .force-velocity relation when muscle lengthens is six

times steeper for slow-lengthening than for slow-shortening. He also showed that

there is a threshold which limits the amount of tension muscle can withstand. This

threshold is approximately 1.SFo. At tensions beyond this, the muscle is known

to "give," a phenomena know as yielding (McMahon, 1984). A representation of

the normalized force-velocity relation is depicted in Figure 3.5. This curve is also

thought to scale with activation (Zajac, 1989).

It is clear now that active force generation is dependent on three factors: length

of the muscle, velocity of the muscle and the activation level. There is evidence

to suggest that total active force generation is best described by a force-length-

velocity relationship which is usually quantified as the product of the force-length

and force-velocity curves (Zajac, 1989; Winter, 1987). Therefore it is convenient

to visualize force generation as a surface in three dimension, where each activation

level determines a new surface (see Figure 3.6).

3.2.3 Force-Length Properties of Tendon

rThe tendon is composed of material both internal and external to the muscle

(see Figure 3.1). The most relevant property of tendon with respect to gait studies

is described by the stress-strain relationship depicted in Figure 3.7. This curve

will be used in a later section to derive a generic force-length curve for tendon.
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Figure 3.5: Force-Velocity Relation for Muscles (C) Full activation when L '_ = Lo_.

(D) The force-velocity curve is also thought to scale with activation. [Zajac]

Figure 3.6: Three-dimensional surface plot showing the dependence of active force

generation on both length and velocity of muscle. [Winter]

r



14

L , f

Figure 3.7: .

Nominal Stress-Strain Curve for Tendons. [Zajac]

It is common to assume that the stress-strain property of tendon is homogeneous

throughout internal and external portions. The tendon tangent of modulus of

elasticity increases with strain in the "toe" region Is _ < .02) and then becomes

linear at higher strains until the tendon fails. Tendon failure occurs around 10%

strain and 100 MPa (Zajac, 1989). The relevance of the interaction of tendon and

muscle will be described in the next section.



CHAPTER IV

MUSCULOTENDON DYNAMIC MODEL

4.1 Introduction

There are a couple of masons why the muscle and tendon should be grouped

together and treated as the musculotendon unit in gait analysis. Tendon and mus-

cle act in series and when the tendon stretches an amount approaching L'*, the

force-/ength characteristics of the grouped actuator differ significantly from the

muscle alone. Thus it is important to treat the muscle and tendon as a muscu-

lotendon complex especially when the ratio L_/L,, is large, as is the case with

muscles around the ankle and knee (Zajac, 1989; Hoy eta/., 1990). Another rea-

son they should be regarded as one unit is because they function together with the

dynamics of the body. In fact, the muscle, tendon and body segments constitute

a coupled, multiple-input multiple-output feedback system (Zajac, 1989). Figure

4.1 describes the interaction between these three units.

As seen from the figure, dynamics of the musculotendon complex can be viewed

as two processes acting in series. Neural input drives the activation dynamics and

outputs the muscle activation which is an internal state quantLfying the ability

of the cross-bridge structure of muscle to generate active force. Then muscle

activation as well the length and velocity of the musculotendon are inputs into

the musculotendon contraction dynamics, the process which outputs muscle force.

These muscle forces then drive the body dynamics which effects the length and

velocity of the musculotendon complex. Thus the dynamics of the whole system

are highly coupled.

4.2 Musculotendon Contraction Dynamics

4.2.1 Scaling and Curves

When including several muscles in a model, it is advantageous to develop curves

describing the attributes of a generic muscle. This model can then be scaled with

appropriate parameters to reflect the dynamics of a particular muscle. In doing

so, only four general curves need be specified: force-length function for passive

15
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A uft)
I Musculotendon
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F ' (t)

B Musoalot_don Dynamics

!

---I Activstion : F t (t)u(t)

I Dynamics

a(t)
: I ContractionDynamics

)TLmt

I
V mt

I

C Contraction Dynamics
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i IL Tendon

Compliance

Muscle Contraction Ia(t) _- Dynamics _ F t (t) = F_(t) co6 (a)
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Figure 4.1: Block Diagram of the Coupled Dynmical Systems (A) Musculotendon

actuators work with the body segments to produce the forces that propel the body.

(B) Dynamics of the actuator consists of two uncoupled parts: activation dynamics
and contraction dynamics. (C) Musculotendon contraction dynamics represent the

interaction between muscle contraction dynamics and tendon compliance.
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muscles, force-length function of active muscle, force-velocity function for active

muscle and the force-length relation for tendons.

Scale parameters needed for each musculotendon group:

1. Maximal isometric active muscle force: Fo,

2. Optimal muscle length: Lo,

3. Pemaation angle when L" = Lo: ao,

4. Tendon slack length: Lt,.

All forces will be scaled by Fo and all lengths will be scaled by Lo. Maximum speed

of shortening will be defined as, Vo =_. Lo/Tc. This quantity is used to render the

muscle specific force-velocity relation. This quantity re scales time and is known

to vary for fast and slow muscles; however, % = .ls is standard value used for all

muscles types (Zajac, 1989). Note then that Vo is not a new scale parameter in

our model.

Force-Length Relation for Passive Muscles (f p( l'_) )

This function represents the spring like behavior that muscles exhibit when

activation is zero. A natural cubic spline which was fitted to data reported on

Scott Delp's wedsite (www.kin.ucalgary.ca/isb/data/delp/delp_mus) is utilized in

this model. Figure 4.2 illustrates the spline as well as the reported data. The

source of this data is well referenced (Delp and Loan, 1995; Delp et al., 1990;

Delp, 1990; Zajac, 1989).

Force-Length Relation for Active Muscles (fz( L_) )

This function represents the isometric force development in muscles when ac-

tivation is 1, i.e., fall activation. Note that force is only developed when L '_ is in

the nominal range: .5 < L "_ < 1.5., as the "Sliding Filament Theory" suggests.

Again a natural cubic splint was used which was fitted to data reported by Delp

(De!p et al., 1990). Figure 4.3 details the correspondence between the data and

the splints.

Force-Velocity Relation for Muscle (fv--t (_r"))

This curve accounts for the fact that muscle cannot change its length instanta-

neously and that the contractile component is damped by a visous effect. Although
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Figure 4.4: Inverse Force-Velocity Relation for Muscles: _" vs.

Hill's equation (3.1) is believed to model force development when a muscle is short-

ening, we choose instead to use a natural cubic spline which was fit to data collected

while the muscle lengthened and shortened (Delp et ad., 1990). Due to the way

the curve is utilized in the formulation of the dynamics, it is convenient to express

this relation in terms of the inverse f_-t(/_). The curve is depicted along with the

data in Figure 4.4. The output of the inverse will be normalized with respect to

Vo, the maximum speed of shortening. In particular where z_ denotes a normalized

active muscle force,

_m = vmlv° = f:l(F).

Force-Length Relation for Tendon

A generic force-length relationship for tendon is derived by a method discussed

= - Lo)/L, and normalized tendon forceby Zajac. Define tendon strain by Et (L _ t t

by F* = Ft / Fo. Zajac assumes a generic force-strain curve ( _t vs. ct) based on the

following two assumptions (see Figure 4.5):

1. A nominal stress-strain curve can be formulated that represents all tendon

(refer to Figure 3.7).
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Figure 4.5: Generic Force-Strain Relation for Tendons: 5 t = _t vs. Et [Zajac]

2. The strain in a tendon when force in the tendon equals the maximal isometric

muscle force is independent of the musculotendon unit. We refer to this strain

t and once this values is specified it determines a nominal value of stress,as £0,

a t . Although the value of each of these quantities is disputed, we will take

eot= 0.033 and a,,t = 32MPa (Zajac, 1989).

Once these assumptions are agreed upon, the ,force-strain relation is achieved by

scaling stress by a t in the stress-strain curve and noting that

at Ft/A _ _t
- Fo/A '

where A is the mean cross-sectional area of the tendon. Thus by scaling this

generic .force-strain relationship by Fo and Lto, a ,force-length function is found for

the tendon.

We use the following function to describe the normalized force-strain relation-

ship

f,(_*)= { .10377(e_**'- ,) 0< _*< .01516 (4.1)r 37.526e t - .26029 .01516 <_et < .i

Figure 4.6 show the correspondence between this function and data reported by

Delp. If the strain in tendon reach values beyond .1, the tendon is known to

rupture (Zajac, 1989). Since such an extreme value of strain should not occur
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Figure 4.6: Force-Strain Relation for Tendons: _t vs. e t -

during normal locomotion, _ part of the curve need not be included in our

analysis.

Also derived fIom equation (4.1) is absolute tendon stiffness which defined by,

Kt(F t) -- dFt/dL t. Observe that

Kt(F t) _-
dF t dff't dE t

d fit d_ t dL t

Fo d__

L_ de t

_-- { (L_)91(/_'+'10377)
(L_) 37"526

0 < _ < .3086

_t > .3086

(4.2)

4.2.2 Derivation of Contraction Dynamics of Musculotendon Unit

The dynamics for the model of the musculotendon unit depicted in Figure 4.7

can now be derived by utilizing the curves defined in the previous section. The

model used is referred to as a Hill-type model and represents the properties of

the musculotendon as idealized mechanical objects. This model has been shown
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Figure 4.7: Hill Type Model of the Musculotendon.

to incorporate enough complexity while remaining computationally practical, thus

qualifying itself as a good model for use in gait simulations (Audu, 1985). Muscle

mass is assumed to be negligible in this formulation even though there are some

stability issues which arise if muscle mass is absent in the dynamics (He, 1988).

The length of the musculotendon L _ is defined to be the distance from origin

to insertion, as stated previously. Note that this quantity is a function of the

segmental orientations. From Figure 4.7, it is clear L "_ also satisfies the following

equation:

L _ = L t + L 0_cos a. (4.3)

Muscle is known to maintain a constant volume. In two dimensions, this implies

L _ is constant, and so

L" = L '_ sin a = Lo sin ao. (4.4)

Fc_ is the force developed by the contractile element (CE), and FpE is the force

developed by the passive element (PE). Thus the force in the muscle is given by
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F" = Fcm + FpE "- F,,a(t)ft(L'a)f,,(v '') + Fo.fp(L'n) • (4.5)

Due to a force balance,

F, = F _ cos a. (4.6)

The dynamics for the musculotendon are expressed by

dr _-d____,aL_:'= S_(_)L '. (4.7)
dt dL t dt

Now an expression for L t can be formulated by differentiating equation (4.3),

L_= L_ - (L"c_ - L__m_a). (4.s)

Since L" is constant, differentiation of equation (4.4) yields an expression for &,

O = L "* sin et + L " cos a &

Substitution of & into equation (4.8) gives

m

& = - _ tan a (4.9)
L m

it = L't-L_(cosa+sinatana)
L_

= L_
COS

(4.10)

Since v '_ = L", equations (4.5) and (4.6) can be used to solve for L '_. In particular

we have

F t = F" cosa = (Foa(t)fz(L")f.(_') + Fofp(L')) cosa (4.11)

and so

- v--_o- f:l Foa(t)/t(L ) 2'

1 ((F*I cosa) - F0/p(L _) )

(4.12)

(4.13)
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Thus the differential equation describing the contraction dynamics of the muscu-

lotendon is

where

(4.14)

vo = 10L0,

i t =

v/(L-" - L'): + (L y
Lo Lo

In ( .]_--_+1

L _. 1+ ,_ ) 0<P<.3086

 +.26o2g .3086 <
L',(I+ 3T.82_ ]

L,,,t _ L t
COS _ --

L _

Fo"

4.3 Activation Dynamics

In this model of the musculotendon complex, neural excitement, u(t), is re-

garded as a control variable which varies between 0 and 1. Neural excitement is

related to contraction dynamics by activation, a(t), which scales the active force-

length and force-velocity curves. Activation varies between 0 and 1, but due to

the formulation of the contraction dynamics it is necessary to specify a minimum

activation which is not zero, i.e., 0 < a,,an _< a(t) _< 1. This process through

which neural input is transformed into activation is called activation dynamics and

is l_nown to be mediated through a calcium diffusion process (McMahon, 1984).

Although there is some evidence to suggest that activation dynamics are not inde-

pendent of contraction dynamics (Zajac, 1989), we adopt the common assumption

of independence.
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Both quantities, u(t) and a(t), can be related to experimental data, i.e. EMG

recordings. In this case, u(t) is related to rectifiedEMG while a(t) is related to

filtered,rectifiedEMG (Zajac, 1989). This relationship between u(t) and a(t) can

be represented by the following bilinear form

where

d----_+ _-_-(fl+(1-fl)u(t)).a(t)=--.u(t)T_ (4.15)

0<3<1.

Note that activation is fastest with time constant r,a when u(t) = 1 and slowest

with time constant r_a/3 when u(t) - O. We took r_a = .012s (Zajac, 1989), and

fl = .1 (Pandy et al., 1990).

As will be discussed, the controls, for the muscles incorporated in this model

were adapted fTom Yamaguchi's dissertation. To simplify the optimization tech-

nique utilized in creating these controls, he assumed u(t) to be piece-wise constant.

With such an assumption, it is possible to find a closed form solution to the dif-

ferential equation (4.15). In particular, assume

Then,

where

u(t) = Uo < t < ts

a(t) = Uo + (a(t:_ ) - Uo)e -._2('1+9'')(t-'°) ti _< t < t I (4.16)

a(t;) =rtm a(t).
t--_ t (

This simplification was useful in the simulation of our model since the number of

differential equations to be solved is large and thus represents additional computer

time. Figure 4.8 shows how the activation dynamics responds to a step input. Thus

activation lags behind neural input with activation occurring at a more rapid rate

than deactivation.
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Figure 4.8: Activation Dynamics: a(t) vs. t. This graph represents the response
of the activation dynamics to a step input of neural activation, i.e., u(t) = X[0,11-



CHAPTER V

THE MUSCULOSKELETAL MODEL

5.1 Introduction

In order to generate the loading conditions relevant during gait, it was neces-

sary to develop a model driven by musculotendon actuators which could simulate

normal and pathological gait. Although many gait models have been built, few

included the complexity which is needed for realistic dynamic simulations. It was

decided that a model developed by Gary Yamaguchi (1989) represented a good

initial choice. With this model, it could be determined if the additional loading

conditions provided by accurate descriptions of muscle forces would be beneficial

in characterizing stress development in bones. Thus the following description of

the musculoskeletal model is adapted from the dissertation work of Yamaguchi.

Before a discussing the actual model, it is important to realize the original

goal of the research pursued by Yamaguchi. In his study the feasibility of using

functional neuromuscular stimulation (FNS) to enable a paraplegic to walk with

normal appearance and speed was questioned. FNS is a process where electrical

currents are artificially applied to nerve and muscle tissue in order to stimulate

muscles. In Yamaguchi own words, "The goal of the study was to examine whether

minimal sets of muscles could be used in order to generate approximately normal

gait trajectories without requiring either high levels of force or unduly precise

control of muscle activation" (Yamaguchi, 1990, pg v). In order to study the

feasibility of FNS, it was necessary for Yamaguchi to develop a model capable of

reproducing most of the known "determinants" of gait as classified by Saunders et

al. in 1953 while maintaining a practical limitation on the degrees of freedom as

dictated by the technology available at that time.

5.2 Skeletal Model

_he following is a brief synopsis of the model utili_.ed in our research and

the reader is referred to Yamaguchi's dissertation for more details. The model

constrains seven rigid-body segments which represent the feet, shanks, thighs and

27
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Figure 5.1: 3-D, 8 DOF Model Showing Segment Angle Definitions: (a) The stance

hip has two DOF, while all other joints are revolute. (b) Front view showing pelvis

list. Stance angles are specified with respect to the inertialframe, if, while the

swing angles are respect to the titled trunk reference frame, d. [Yamaguchi]

trunk to 8 degrees of freedom. All joints are assumed to be revolute having one

degree of freedom with the exception of the stance hip which has two degrees of

freedom. This allows the hip to ab/adduct, a condition which reduces the degree

of coupling between the trunk and the swing leg (Yamaguchi, 1989). Figure 5.1

shows the generalized coordinates which were used to describe the configuration of

the body. Joint angles ql,q2, and q3 are measured with respect to the horizontal

or transverse plane and the rotation of these joints occur about an axes parallel

to _2. Movement of the stance leg is confined to the sagittal plane, but due to the

extra degree of freedom granted to the stance hip, the swing leg and trunk can

also move in the frontal or coronal plane through pelvic list.Joint angle q4 tilts

the tmnk as well as the swing leg about an axis parallel to nl -- d_. Joint angles

qs through qs are measured in the titled plane and these rotations occur about an

axis which is parallel to _.
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A. B.
m d

Figure 5.2: Definition for Inertial and Segmental Parameters: (a) Stance Leg

(sagittal plane) (b) Swing Leg (titled plane).

This musculoskeletal model represents a normal male with mass totaling 76

kilograms. Figure 5.2 shows the definitions for the segmental dimensions and the

inertial parameters used to specify this model. Segmental dimensions and inertial

parameters are listed in Table 5.1 (Yamaguchi 1989).

A key element of the model is that only one-half (14%, approximately left-

toe-off, to 62%, approximately left-foot-flat) of the gait cycle is simulated in this

analysis. The complete gait cycle (see Figure 5.3) can be reconstructed under

the assumption of bilateral symmetry. Bilateral symmetry is not always valid

since many asymmetries in gait have been reported (Winter, 1979); however, the
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Table 5.1: Segment dimensions and inertial parameters used in this model (see

Figure 5.2). All starred items are given with respect to the segments' center of

mass. (Yamaguchi 1989)

foot

shank

thigh

trunk

lengths mass

(m) (kg)

I.i= 0.175 rna -- I.i0

I_ -- 0.118

l_, = 0.100

l:a -- 0.0295

lb = 0.435 mb = 3.75 I_1

t; = 0.247 I_2

I_ = 0.410 mc - 7.58 I_1

l_ = 0.227 I_

t&

ld = 0.172 md -- 51.22 I_1

l_ = 0.343 I£

rne - mc

m I =mb

my = m a

/e --/c

t: = to- t;
I/= Ib

l_3= l,_
191= l:_

t'_3= t,,1 - l_x

principal moments

of inertia (kg-m 2)

I_a = 0.002

I£ = 0.008

r:_ = 0.009

= 0.019

= 0.065

= 0.065

0.080

0.126

0.126

I:t,e2,e3 _- 1:1,e_2,c3

ITl,f2.f3 = [;1,b2,b3

I;2= I_a

I;_= I:,,

= 0.764

= 3.407

= 3.297
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Figure 5.3: Simulated Gait Cycle With Respect to Total Gait Cycle. This model
assumes bilateral symmetry to reproduce 96% of the cycle. [Yamaguchi]

advantages of this assumption warrant its inclusion. This assumption simplifies

the modeling in that the stance leg is always the stance leg and the swing leg is

always the swing leg. As a result, muscles in the swing and stance leg can vary

according to the function of that leg in the simulation. With this assumption, it

is also valid to have the stance toe constrained to the ground which eliminates

one more degree of freedom. Thus this simplification requires less muscles to be

modeled and less degrees of freedom.



32

moment
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Figure 5.4: Passive Joint Moment for Ankle Joint. Positive angles and moments

correspond to plantarflexion of the ankle.

5.3 Passive Constraints at the Joints

The range of each joint angle was limited to normal ranges through the use

of ligamentous constraints. If the joint angle stays within a nominal range, then

the effects of the passive structure are minimal, but when the nominal range is

exceeded the passive torques grow exponentially. The general form of the passive

moments is given by

Mr,, = kl e -_(°-°2) - k3 e -k'(°'-°) - c 0 (5.1)

where 0 is the joint angle measured in radians, 0 is the joint velocity measured in

radian per second and Mr,, is measured in Newton-meters. Note that 02 < 0 < 01

represents a nominal range for that joint. The parameters kj, Oj, and c were taken

from Davy and Audu (1985, 1987) and modified by Yamaguchi (1989). Included

in this passive moment is a damping term, -cO. This is vital to the model since

a damping term was not included in the musculotendon model. See Table 5.3 for

a list of the passive parameters and definitions of the joint angles in terms of the

generalized coordinates. Figures 5.4 through 5.6 depict the passive joint torques

under static conditions, i.e., neglecting the damping term.
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Figure 5.5: Passive Joint Moment for Knee Joint. Positive angles and moments
correspond to flexion of the knee.

moment (N m)
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Figure 5.6: Passive Joint Moment for Hip Joint.

correspond to extension of the hip.

Positive angles and moments
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Table 5.2: Coefficients for PassiveJoint Moments

a/lkle

0,_,_ = ql - q2 + .5934

0,_._ = 2.1642 - (q8 - qT)

k.nee

0a,,_ = q2 - q3

0_n,_ = q6 - q7

kl = 2.0

k2 = 5.0

k3 =9.0

k4 : 5.0

kl =3.1

k2 = 5.9

k3 = 10.5

k4 = 11.8

= 2.6

=5.8

= 8.7

= 1.3

cl = 9.43

01 = 1.92

02 = 1.047

cl = 3.17

01 = 0.00

02= -1.92

(20 ° dorsiflexion)

(30 ° plantarflexion)

(full extension)

(110 ° flexion)

hip kl

0,_,_, = q3 - qs k2

0,_,ina = 3.14 - (qs + q6) k3

k4

cl = 1.09

01 = 1.92

02 = 0.1744

(110 ° flexion)

(10 ° flexion)
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Figure 5.7:

T _F"

"Soft" Constraint on Swing Leg During Double Support [Yamaguchi]

5.4 Soft Floor Constraints

Although the stance toe is constrained throughout the simulation, it was nec-

essary to incorporate additional constraints in order to prevent the stance heel and

swing foot from penetrating the "ground" and to eliminate excess sliding of the

swing foot during double support. These additional constraints are considered to

be "soft" (Hemami, 1975). The vertical ground reaction forces which acted on the

heels of both the stance and swing leg were modeled as highly-damped, stiff linear

springs

F,_,,,.,,,,a = { 0 zheel > 0 (5.2)-(1.5 x lOS)zheel - (1 x lOa)zl_.eel zheel < 0

where zheeI is the height of the heel above the ground. On the swing heel an

additional frictional force applied in a direction parallel to the ground in the sagittal

plane is used to prevent excess sliding (see Figure 5.7). This force is proportional

to the normal force applied to the swing heel,

-, = 0 zh eZ. , g > 0 (5.3)
[ -.51F,_,.,n,a( zheel,_,i,9) I zheel,_,,i,,9 < 0

Once flat-foot is achieved by the swing leg a counterclockwise torque is applied

to prevent the foot from penetrating the ground. The torque is model as a damped,
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torsional spring which resists plantarflexion of the foot. This torque is given by

T = { 0 zheel_ > 0 or J > 0 (5.4)-5696J - 38.19_ zheel,,,,i,s < 0 and g < 0

where _ is the angle the bottom of the foot makes with the ground.

These "soft" constraints allow the same model to be used during the single

and double support phases of gait. If the ground had been modeled as "hard"

constraint, then one would lose a degree of fTeedom on the swing leg when the toe

touches the ground. This would mean two models would be needed to simulate

this phase of gait and a switch between the two systems would occur at heel strike.

5.5 Incorporating the Musculotendon Actuators

5.5.1 Minimal Set of Muscles

As stated earlier, one of the goals of Yamaguchi's dissertation was to find a

minimal muscle set needed to simulate normal gait. This minimal set of muscles

(see Figure 5.8) as well as the controls for each musculotendon actuator was deter-

mined by a dynamic optimization technique which will be discussed later. This set

was found to be in good qualitative agreement with record EMG activity during

gait (Yamaguchi, 1989). We will use the same muscle sets as his program derived.

As a result, ten musculotendon units are incorporated into our model, five on

each leg (refer to Figure 5.8). On the stance leg, the relevant muscle groups are

the Soleus, Gastrocnemius, Vasti, Gluteus Medius & Minimus, and the Iliopsoas.

While the swing leg utilizes the Dorsiflexors, Hamstring, Vasti, Glutens Medius

and Minimus and the Iliopsoas. Thus seven different musculotendon groups need

to be specified in this model. Table 5.3 shows the constituent muscles composing

each musculotendon group, and Table 5.4 gives a list of the parameters which are

used to distinguish the dynamics of each particular musculotendon unit.

5.5.2 Origins and Insertions

In order to incorporate these musculotendon into the dynamics, we must place

the muscles geometrically on the body segment so that the length of the muscu-

lotendon, L 'nt and the velocity of the musculotendon, v 'nt, can be derived as a
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Table 5.3: Musculotendon Groups and Their Constituent Muscles (Hoy et aI.,

1989; Yamaguchi, 1989)

Musculotendon Groups Constituent Muscles

Iliopsoas

Gluteus Medius

& Minimus

Hamstring

Vasti

Gastrocnemius

Soleus

Dorsiflexors

hiatus

Psoas

Gluteus Medius

Gluteus Minimus

Semitendinosus

Semimembranosus

Biceps Femoris, long head

Vastus LateraUs

Vastus Medialis

Vastus Intermedius

Gastrocnemius Laterails

Gastrocnemius Media/is

Soleus

Tibialia Anterior

Extensor Digitorum Longus

Extensor Hallucia Longus

Peroneus Tertius

t
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Table 5.4: Parameters Defining the Musculotendon Actuators (Hoy et al., 1989;

Yamaguchi,1989).

Musculotendon Actuator

Maximum Optimal Tendon Pinnation

Isometric Muscle Fiber Slack Angle

Strength Length Length

F_ L_ L_ a

(N) (m) (m) (deg)

Iliopsoas

Gluteus Medius & Minimus

Hamstring

Vasti

Gastrocnemius

Soleus

Dorsiflexors

1474 0.1269 0.0850 7

2686 0.0760 0.0355 10.4

2340 0.4065 0.3850 8.7

6482 0.1096 0.2250 4.5

1423 0.0482 0.4250 14.8

3599 0.0243 0.2700 25

1400 0.1009 0.2250 6.9



39

Figure 5.8: Minimal Set of Ten Musculotendon Actuators asDetermined by Yam-
aguchi

functions of the state variables, i.e. the generalized coordinate, qi. As stated ear-

lier, the attachment of the musculotendon to bone is specified by the defining an

origin, the proximal attachment, and an insertion, the distal attachment. Effective

origins and effective insertions are specified when the straight path from the actual

origin to actual insertion passes through bone or out of anatomical range during

certain body configurations. Origins and insertions are specified with respect to

coordinate systems which are directed along the bones and are fixed with respect

to the foot, shank, thigh and pelvis. The origin and insertion points for the 7 mus-

cle groups used in this analysis are given in Table 5.5. We used the same origins,

insertions and pathways as utilized by Yamaguchi in his model which were defined

according Brand et al. (1982) and Hoy et al. (1990).
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Table 5.5: Origins and Insertions of the Musculotendon Groups. X, Y and Z axes

correspond to pelvic, femoral, tibial and foot coordinates system (see Figure 5.9).
The foot reference frames is the same as the tibial reference frame at anatomical

position. Subscripts a and e refer to actual versus effective origius/iusertious.

Musculotendon Point X Y Z Reference

(m) (m) (m)  ame
Hiopsoas Oa 0.0075 0.1350 -0.0400 pelvic

O, 0.0260 0.0293 -0.0042 pelvic

Ia -0.0180 0.3351 0.0116 femoral

Gluteus Medius

& Minimus

O -0.0155 0.0785 0.0076 pelvic

I -0.0159 0.3873 0.0589 femoral

Hamstrmg Oa -0.0409 -0.0455 -0.0140 pelvic

I, -0.0170 0.3800 0.0073 tibial

Vasti O,, 0.0106 0.2026 0.0205 femoral

I_ 0.0170 0.3930 -0.0006 tibial

Gastrocnemius O, -0.0203 0.0071 -0.0073 femoral

Ia -0.0368 -0.0429 0.0028 foot

Soleus Oa -0.0268 0.2467 0.0006 tibial

I_ -0.0365 -0.0428 0.0056 foot

Dorsiflexors O_ -0.0155 0.2175 0.0134 tibial

O_ 0.0259 0.0117 -0.0093 tibial

I_ 0.1035 -0.0520 0.000 foot
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Figure 5.9: Definitions for the Foot, Tibial, Femoral and Pelvic Frames

5.5.3 Calculation of Musculotendon Length, Velocity and Moment Arm

The total length and velocity of the musculotendon complex, which is needed as

input into the musculotendon dynamics, can be derived for most muscles through

vector addition. In this case, the length of the musculotendon is given by

L 'n'= + + (5.5)

where O and I refer to origin and insertion, and the subscripts e and a refer to

actual and effective coordinates. The velocity of the musculotendon is then just

the time derivative of the length.
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Musculotendon forces were incorporated into the body dynamics as joints

torques. When a musculotendon spans a johlt J, a joint torque is realized across

that joint. The joint torque due to musculotendons which do not span the knee are

computed using standard vector cross product methods. In this case, the moment

acting on the proximal segment is define as follows

x/= × (5.6)

where ff is a vector from the joint to a point on the line of action of the musculo-

tendon, and the line of action is defined by the unit vector

O,/_,

the tension in the musculotendon complex, F*, is produced according to equation

(4.14), and the symbol × represents a vector cross product (see Figure 5.10). The

cross product,

Oe/_ ,

represents the effective moment arm associated with the musculotendon at a certain

body configuration. The sign in equation (5.6) depends on whether the musculo-

tendon acts to extend or flex the joint it spans.

This general method works well for all muscle which do not span the knee.

The complication which arises for those musculotendons which do span the knee

(Vasti, Hamstring, and Gastrocnemius) occurs because of the complexity of the

knee joint. In short, as the knee flexion angle varies this produces both a change

in the location of the knee joint center and in the location of the patella. Since

this complexity is not accounted for in the simple segmental model formulated

here, it is best to use alternative methods to the vector methods discussed above

when defining effective moment arms and the lengths of these musculotendons. As

an alternative, we defined the effective moment arms of the Vasti, Hamstring and

Gastrocnemius according to curves which were formulated by Yamaguchi from a

planar model of the knee developed by himself and Zajac (1989). These curves
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t

Figure 5.10: Muscle Pathway and Effective Moment Arm [Yamaguchi]

define the moment arms as functions of the knee flexion angle (see Figures 5.11

through 5.13). Thus the joint moments produced by these musculotendons which

span the knee are given by

ffl = +Ft. me(OI) (5.7)

where F t is produced according to equation (4.14) and me is the effective moment

arm as a function of the knee flexion angle, 0 t.

We then calculated the length of tlmse musculotendous by integration of the

moment arm (Wendt and Johnson, 1985; Hoy et al., 1990; Yamaguchi, 1989). In

this method, the relationship between the length of the musculotendon (Lint), the

effective moment arm (m,) and the joint angle is given by

d L mt
13mt -- --_ me(o/) d_ I .

Thus three more differential equations are added to the system.

(5.8)
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Figure 5.11: Effective Moment Arm of Vasti as a Function of Knee Flexion

Figure 5.12: Effective Moment Arm of Hamstring as a Function of Knee Flexion

o_

i
O_

i '

Figure 5.13: Effective Moment Arm of Gastrocnemius as a Function of Knee Flex-
ion
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5.6 Controls for the Musculotendon Actuators

As stated earlier, when a direct-dynamic analysis of gait driven by muscu-

lotendon actuator is to be simulated, musculotendon controls must be derived.

Developing these controls constitutes one of the most difficult aspects in forward

gait analyses. Thus one of the advantages of mimicking Yamaguchi's model was

that his controls, with minor alterations, could initially be used to produce loading

conditions needed in our analysis of the long bones.

Some form of dynamic optimization is usually utilized in developing controls for

a forward analysis. Yamaguchi produced his controls through a two-phase process:

(1) coarse optimization of controls and (2) fine-tuning via trial-and error. The

first phase used the dynamic programming of Bellman (Kirk, 1970; Larson and

Casti, 1978) to determine the minimal set of muscles needed in the simulations

and a crude estimation of muscle activation. During this process, Yamaguchi's

model was simplified significantly to ease the computational cost associated with

dynamic programming; this included discretizing the state space.

Dynamic programming offered Yamaguchi a couple of advantages over other

optimization schemes. This approach allows the control to be dynamically opti-

mized over the entire time interval as opposed to being optimized in a quasi-static

fashion (Yamaguchi, 1989). Another advantage is that dynamic programming does

not require the linearization of the dynamic equations of motion, nor do bounded

controls present a problem.

The cost function used in the dynamic programming consists of a error tracking

term so that deviation from the nominal trajectory are penalized and a term which

seems to be related to muscle fatigue (Crowninshield and Brand, 1981)

Ji(k) = Y_ w,,,(x, - x,,&o) 2 + _ w_,, PCS A, (5.9)
l=l I=I

In equation (5.9), x: is one of the 2n elements comprising the state variable, )_ =

(ql, q2, q3, q4, qs, q6, qr, qs, ql, q2, q3, q4, qs, qs, qn qs) (refer to Figure 5.1) associated

with the body, _ and PCS Al are the force and physiological cross-sectional area

of muscle l, and m is the number of muscles considered originally in
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Figure 5.14: Control u(t) (dashed lines) and activation a(t) (shaded curves) for
the ten musculotendon actuators used in Yamaguchi's dissertation [Yamaguchi]

Yamaguchi's research. The nominal gait trajectories were contained in XZ,d_, and

were specified according to data recorded by Winters (1987) and Inman et al.

(1981).

Once a minimal set of muscles (see Figure 5.8) and crude activation controls

were formulated, Yamaguchi ran full model simulations and refined the neural

controls. The controls Yamaguchi derived are pictured in Figure 5.14. When we

ran our simulations, we started with these controls and proceeded to fine-tune

them to meet the specific needs of our slightly modified model. As noted by other

researchers (Yamaguchi, 1990; Pandy and Berme, 1987), it is surprising that such

a complex, coupled and dynamically unstable system can simulatc normal gait

with such crude and simple controls.



CHAPTER VI

DYNAMIC SIMULATIONS

6.1 Numerical Implementation

Until recently a limiting factor on the complexity added to gait models was the

difficulty associated with deriving the equations of motion. Kane's vector based

method for formulating equations of motion simplified this task, but still deriva-

tions done by hand could still take months to perform (Kane and Levinson, 1985).

Luckily Kane's method lends itself to computer implementation. Programs now

exist which are proficient in algebraic manipulations and Kane's method (SYMnA,

by Nielan, 1986; AUTOLEV, by Schaechter and Levinson, 1987). These programs

are able to calculate the entire set of dynamic equations in algebraic form for

open-chain linked-segment models, making it possible to utilize models with more

segments and more degrees of freedoms.

AUTOLEV was our choice of program because it provides a step by step approach

to Kane's method which allows some insight into the nature of the equations de-

rived. As stated in the user's manual (Kane and Levinson, 1996), "AUTOLEV

was created expressly to facilitate analyses based either on Kane's method or on

Newton-Euler equations." In addition, AUTOLEV produces efficient programs in

FORTRAN or C for the numerical solution of ordinary, nonlinear differential and or

non-differential equations. Thus AUTOLEV was considered to be a valuable tool

with regards to this research.

A brief description of how AUTOLEV formulates equations of motion may be of

value. As stated earlier, AUTOLEV allows the user to perform Kane's step-by-step

method online. Kane's method, also known as Lagrange's form of D'Alembert's

principle (Ju and Mansour, 1988), is based on dynamical equations of the form

Fr + F* = 0 (r = 1,2,...,p) (6.1)

where/_r are the constrained generalized active forces and F_ are the constrained

generalized inertial forces for a system S possessing p degrees of freedom in a

Newtonian reference frame N. The constrained generalized active forces are defined

47
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as

1)

(6.2)
i=1

where v is the number of particles (or segments) that form S, P/(i = 1, ... , r) are

the particles (or segments), _P' (r = 1,..., p) are the constrained partial velocities

of Pi in the reference frame N, and R/ is the resultant of all contact forces (such

as ground reaction forces) and distal forces (such as gravitational forces). The

constrained generalized inertial forces are defined by

F; = E R"
i=l

where R_ is the inertial force for Pi in reference frame N; that is,

(6.3)

Ri* =- -miai (6.4)

where mi is the mass of Pi and ai is the acceleration of Pi in reference frame N.

Equation (6.1) is equivalent to Newton's second law of motion (Kane and Levin-

son, 1996). Indeed if Ri is the resultant of all contact forces and distance forces

acting on a typical particle Pi of the system S, and ai is the acceleration of Pi in a

Newtonian reference frame N, then in accordance to Newton's law the equations

of motion are given by,

Ri - miai = 0 (i = 1,..., v) (6.5)

where mi is the mass of Pi and v is the number of particles of S. Dot-multiplication

of equation (6.5) with the partial velocities 9_, of P_ in N and subsequent summa-

tion yields

10 V

_p/ "

v r P_ + _ 9P_. (-m_ai) = O, (r = 1,... ,p), (6.6)
i=1 i=1

which is indeed equivalent to equation (6.1) by the definition stated in equations

(6.2), (6.3) and (6.4).
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When using AUTOLEV, one follows a simple recipe to obtain the equations of
motion:

• Declare a Newtonian Reference frame N.

• Declare bodies, frames, points, and particles, specifying their mass and iner-

tial characteristics.

• Declare generalized speeds and their time-derivatives.

• Declare generalized coordinates and their time-derivatives.

• Create the kinematic differential equations by relating the time-derivatives

of the generalized coordinate to the generalized speeds.

• Form position vectors and directional cosine matrices.

• Form angular and linear velocities, which AUTOLEV can do for you.

• Impose motion constraints, if necessary.

• Form angular and linear accelerations, which AUTOLEV can also do for you.

• Enter expression for forces and torques.

Once these components are entered, AUTOLEV can generate the equations of mo-

tion and FORTRAN or C code which will integrate these equation forward in time

using a fourth-order Runge Kutta integration scheme. In our model, the influences

of the muscles where realized as torques entered about the joints, and ground reac-

tion forces were entered as forces applied to the heels. Most of the components of

the musculotendon dynamics were entered into AUTOLEV directly; however, some

issues, such as the controls and the spline approximations to various curves, were

entered d_ectly into the C code in the form of subroutines.

One of the additional benefits in using AUTOLEV was its ability to find instan-

taneous loading conditions needed in our finite element code to analyze the stresses

in long bone. Once the equation of motion were generated, one could specify ad-

ditional generalized speed, properly constrain them and then solve for the contact
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Figure 6.1: 2-Dimensional Representation of Our Gait Simulation

or joint reaction forces found at the distal and proximal ends of the segments.

AUTOLEV was also able to resolve the tangential components of the muscle forces

along the bones, which enabled us to specify surface tractions along the bone.

6.2 Dynamic Simulation

Most simulations were performed on the Digital Alpha workstation. The av-

erage time needed to perform a full simulation was approximately 3 hours. Many

simulations were ran before the model performed appropriately. Figure 6.1 shows

the graphics corresponding to one of the better simulations. Notice that the fig-

ures do appear to mimic normal gait, with a few exceptions which will be discussed

later.

For obvious reasons, the simulation and many of the results reported in this

section are very similar to the results reported by Yamaguchi. However, since our

models do differ slightly, e.g., we used different muscle models, slight variations do

occur and shall be pointed out to the reader.

6.2.1 Controls and Initial Conditions

As stated earlier, one of the reasons for utilizing Yamaguchi's model was that

the basic controls laws needed for a gait simulation were already formulated. We

thoughtthat this would accelerate the rate at which we could arrive at the loading

conditions needed for our continuum analysis of the bones. In retrospect, it is

not clear that this did indeed speed up the process. This is because it is hard

to mimic such a complex process when all details arc not clearly defined. The

degree to which small variations in the model affect the overall performance of the
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simulation is hard to define, and one is left wondering if variations are due to the

slight differencesor if a fundamental elementhasbeen neglected or misinterpreted.

With that said, we found that our final model did indeed mimic the overall

performance of Yamaguchi's model quite adequately, and our control laws varied

only slightly from the original set as published by Yamaguchi (1989). The final

version of our controls for each musculotendon unit are illustrated in Figure 6.2.

The reader is referred back to Figure 5.14 to evaluate the differences between these

two control sets.

One possible explanation for some of the differences could be the variation of

the muscle model used. In Yamaguchi's dissertation, there is a schematic diagram

depicting the Hill type musculotendon model he utilized. In this diagram, a se-

ries elastic element within the muscle is depicted; however, no further information

on the approximate form of this elements was given. As a result, we choose to

ignore this feature. Thus our musculotendon actuator undoubtedly reacts some-

what differently from his. It should be noted that Zajac gives some fundamental

reasons which validate the exclusion of this element, in that it's inclusion raises

issues about the constituency of the basic notion that sacromeres and fibers act

in concert. Zajac also states that in most instances tendon compliance dominates

and that the elastic element in muscle can be neglected (Zajac, 1989). Thus we

felt justified in the exclusion of this element from our musculotendon model.

Another possible explanation for the differences needed in our simulation could

be the result of the variance in the initial conditions used to start the simulation.

In order to start the simulations, the program must be provided with the initial

segmental orientations (ql, ..., qs), the initial angular speeds (01, .... , tjs), the initial

force in each musculotendon, and the initial lengths of the musculotendons which

spanned the knee joints whose lengths were found using the moment arm integra-

tion method. Since initial conditions were not specified in Yamaguchi's disserta-

tion, we took educated guesses at what the model's initial segmental orientation

should be by studying Yamaguchi's figures and graphs and then by referring to the

gait data reported by Winter (1987). The initial force in each musculotendon was

found by running mock simulations to find the steady state muscle force achieved

by the initial control when the motion of the model was constrained. Finally the
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Figure 6.2: Controls Utilized in Simulation
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initial lengths for the musculotendons which crossed the knee were determined by

trial and error. We sought an initial length of the musculotendon such that the

muscle maintained an appropriate length throughout the gait cycle. The initial

conditions defined for the angular velocity of the segments was crucial for a proper

simulation of gait. Of particular importance was the initial sagittal plane velocity

of the HAT. Due to its enormous mass, errors here were hard to overcome. Table

6.1 defines our initial conditions.

6.2.2 Joint Angles and Joint Torques

A standard means of comparing and validating gait simulations is achieved by

displaying the joint torques which drive the system and the resulting joint trajec-

tories. Figure 6.3 depicts the standard definitions of the joint angles. Notice that

these joint angles are distinct from the generalized coordinates used in the analy-

sis. Figure 6.4 displays the resulting joint trajectories in our simulation. Although

these trajectories appear to be in good qualitative agreement with the trajectories

reported by other researchers (Yamaguchi, 1989; Winter, 1987; Inman et al.,1981),

there are some critical areas of concern. One such area is the slight hyperextension

of the stance leg knee joint. Another area of concern is the exaggerated flexion of

the hip.

Joint torques represent the combined effects of the active and passive structures

which drive the body. In an effort to describe all the components which accumulate

in the total joint torque, two graphs are displayed for each joint angle (see Figures

6.5 through 6.9). The first graph displays the total joint torque and distributions

of the active and passive components. The second graph breaks down the activc

component, i.e., the muscular component, into the individual contributions from

each musculotendon unit spanning that joint. The second graph thus gives one

an idea of the role played by each musculotendon throughout the gait cycle. It is

important to understand that these pictures do not give the whole story in that a

torque produced by a muscle spanning one joint can and usually does accelerate

all body segments to a lesser or greater extent. This idea of describing muscular

function by determining the segmental accelerations caused by each musculotendon

was suggested by Zajac and Gordon (1989). We find that our total torques are in
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Table 6.1: Initial Conditions for the Gait Simulation

Generalized Coordinates Generalized Speeds

(Degrees) (Radians/Seconds)

ql 146

q2 85

q3 107

q4 0.0

qs 92

q6 91

qv 140

qs 190

ql

q_

q3

q4

q5

q6

qT

qs

-0.03

-1.06

-2.05

0.00

-0.41

-2.85

-.35

-1.97

Musculotendon Forces

(Newtons)

Stance Leg Swing Leg

F_ 900 F,_ 130

Fg. 85 FL. .5
F_ 850 F t 3

UQ$

F'g,_ m 1450 F_ 15

F_, 32 F_o 630

Musculotendon Length

m_
Lva_°

Lmt
ham,o
mt

0.3192

0.4775

0.3199
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6_ttc

Figure 6.3: Joint Angle Definitions

good agreement with Yamaguchi's reported joint torques, and these torques are in

general accordance with the data reported by other researchers (Davy and Audy,

1987; Hardt, 1978).

6.2.3 Musculotendon Analysis

In this section, the dynamics of each musculotendon unit will be reviewed in

terms of the normalized force and power produced by each musculotendon. Figure

6.12 reports the normalized force realized in the tendons of all ten musculotendon

actuators. These normalized forces, Ft/Fo, were obtained through the dynamics

described in Chapter V. Although Yamguchi did not report such results, similar

forces are predicted by other authors (Pierrynowski and Morrison, 1985; Brand et

al., 1986).

Another means of describing the functions of the muscle, tendon and the com-

plete musculotendon unit is through the analysis of the power trajectories. These

trajectories are depicted in Figure 6.13. This power reflects the rate at which the

muscles and tendons are expending and absorbing energy. When a muscle or ten-
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don produces force while shortening, a concentric contraction, energy is released

to the system. In contrast, if force is produced while the unit is lengthening, an

eccentric contraction, then energy is absorbed or stored. This gives insight into

the function of the musculotendons.

To exemplify these ideas, we will examine the power histories of the plantarflex-

ors, the Soleus and Gastrocnemius, of the stance leg. After heel strike of the stance

leg and during single leg support the total power, the summation of the powers in

the tendon and muscle, of the plantarflexors are predominately negative as they

store energy or absorb the weight and maintain the upright position of the leg.

However, during the push off phase this power becomes positive as they release

this energy to facilitate lift off of the stance leg and the shift of weight to the swing

leg during double support. In addition, the hamstring is seen to absorb energy as

it brakes the extension of the swing leg.
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Figure 6.12: Normalized Force Histories for each Musculotendon. Left column
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CHAPTER VII

A CONTINUUM ANALYSIS OF SKELETAL ELEMENTS

7.1 Introduction to Bone Mechanics

Before giving the results of our continuum analysis of the long bones, it might be

beneficial to give a brief summary of some of the issues involved in bone mechanics.

First some of the difficulties associated with modeling the skeletal structures will

be defined. A brief synopsis of the work which has been done in this field will then

be presented. This summary will include the common simplifying assumptions

under which bone is modeled. In conclusion, special attention will be given to the

research which has attempted to include some of the effects of the musculature in

the analysis.

Bone is known to have a complex geometry and nonhomogeneous constitution

and these factor are responsible for many of the difficulties associated with defining

the mechanical properties of the skeletal members. One only needs to analyse

the structure of the femoral head or pelvic girdle to appreciate the nonstandard

geometry inherent in bone. With regards to the nonhomogeneity of bones, it

is known that bone is the composition of three different materials. The hard

outer shell is referred to as cortical or compact bone while the interior of the

bone is composed of cancellous bone, also referred to as trabecular or spongeous

bone, and bone marrow. Trabecular bone is a very complex material which is

noncontinuous even on a macroscopic level and is best described as a structure not

a material (Huskies and Chao, 1983). Thus bone is most accurately described as

an anisotropic, nonhomogeneous material.

Before giving a brief review of some of the current work, it should be noted

that bone mechanics is not a new area of research. Some of the classical studies

which are cited often are the products of Wolff (1870, 1892) and Koch (1917).

Wolff postulated that the patterns seen in the trabecular of bone are aligned with

the principal stress fields developed in the bone. This hypothesis became known as

"Wolff's Law" and research continues to be conducted in an effort to substantiate

this idea (Hayes et al., 1982; Koch, 1917; Rybicki et al., 1972). Later, Koch did

some ground breaking work as he gave the first detailed geometric description of
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the femur and went on to calculate the stressesinduced by loadings which were

assumed to occur during normal activities. This work was a landmark in that

it was the first attempt to model the bone as a beam and the first to attempt to

include someeffectsof the musculature on the stressesand strains. Although Koch

underestimated the joint and muscle forces (Duda et al., 1997), he still concluded

that that muscular action could reduce the bending stresses (Koch, 1917; Rybicki

et al., 1972).

Since then many studies have followed Koch's lead by modeling the bone as

a beam. Viano et al. (1976) assumed that the femur was isotropic and modeled

it as a hollow cylinder. While Piziali (1976) modeled the tibia as a cantilever

beam fixed at the knee and loaded at the ankle. He suggested that bone be

viewed as transversely isotropic, that is bone displays one set of elastic properties

in one direction and a second set in the perpendicular plane. Thomsen (1990)

modeled the tibia as straight, twisted non-uniform Timshenko beam. He viewed the

compact bone and cancellous bone as homogeneous, linearly elastic, transversely

isotropic material, while bone marrow was consider completely flexible. Thomsen

concluded that the stiffness of the trabecular can be ignored, the twist of the

tibia is insignificant and thus that a simplified approach modeling the tibia as a

uniform beam using mean cross-sectional properties can be justified as long as shear

deformations are considered. There are many more authors who have modeled the

long bones as beams (Cowin et al., 1985; Huskies, 1983; Salathe et al., 1989).

This should give one a feel for the general assumptions made while studying the

mechanical characteristics of bone.

Finite element techniques were introduced into the field of bone mechanics in

1972 about fifteen years after their conception into engineering mechanics (Huskies

and Chao, 1983). The usefulness of this technique resides in its ability to han-

dle complex geometries and nonhomogenous materials. For a nice review on the

progress of FE techniques in orthopedic biomechanics throughout the first decade

of its us_, the reader is referred to the paper written by Huskies and Chao (1983).

Rybicki et al. (1972) did a comparison of beam theory and a continuum theory

in the form of a finite element program when he studied the femur. This analysis

is of particular interest to this dissertation because Rybicki did study the effects
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of certain muscle groups on the distribution of stress and internal moments. He

concluded that while classical beam theory is appropriate in the shaft of the femur

it is inaccurate for regions of the greater trochanter, femoral head and areas of

muscular attachment. He also stated that muscleshave a pronounce effect on the

maximum stress and total strain energy of the femur. Thus we are encourageto

pursue a continuum analysis.

As stated above, there is particular interest in the researchthat hasattempted

to included the effects of the muscular system into the loading criteria. This

dissertation is interested in the responseof bone to natural settings where muscular

activity plays a role. Unfortunately, it is often hard to define thesenatural loading

conditions. The determination of muscular forces is nontrivial, aswas discussedin

Chapter II. As a result, most studies have focused on the in vitro response of bone

to artificially applied loads (Collier et a/., 1982; Curry, 1959; Viano et al., 1976;

Reilly and Burstein, 1975); however, there axe some studies which have attempted

the inclusion of normal loading conditions (Duda, 1997; Koch, 1917; Lanyon and

Smith, 1970; Orne and Manke, 1975; Toridis, 1969; Sharkey, 1995, Rybicki, 1972).

The studies of Koch and Rybicki have already been mentioned, but it should be

noted that the muscular forces they utilized were not derived from a particular

task. Toridis (1969) developed a theory in which the bone is modeled as a three

dimensional elastic beam where muscular force can be included along the bone as

point attachments. Although the theory of how to compute these stress field is

presented, a detailed example of its application is absence and the reader is not

informed on the effects of the muscular forces into the analysis. Sharkey (1995)

conducted an in situ experiment studying the metatarsal strain in cadaveric feet

in an attempt to characterize the development of metatarsal stress fractures which

occur frequently in the army. By simulating physiological loading and contraction

of the plantar flexors, he was able to conclude that the fatigue of the flexors have

a profound effect of the development of stress fractures. Lanyon and Smith (1970)

conducted in vivo experiments by placing strain gauges on the tibial shafts of sheep.
r

Among their conclusions is the statement that local deformation that culminate in

fracture are in many case the result of uncoordinated muscular action. Fortunately

or unfortunately, these types of studies are unethical iu human analysis, and one
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must resort to other means to derive the loading conditions for normal activity.

Duda (1997) in his paper entitled, "Internal Forces and Moments in the Femur

During Walking," attempted to do just this. In this paper, he included the effects

of "all thigh muscles, body weight and contact forces." The muscle forces were

taken from the work of Brand (1982, 1986). Thus were derived using a "static"

optimization technique as described in Chapter II. Although Duda states that this

was not a continuum analysis, it is unclear from the paper how he modeled the

femur. Regardless, he does conclude that the muscles play a substantial role in

balancing the loads within the femur.

7.2 Finite Element Analysis of Tibia

It is a contention of this research that the interrelationship between neural

control, applied muscle forces and the resulting motion of body segments influences

the development of stress in skeletal members. To explore this notion, a continuum

analysis of the tibia will be carried out in which the boundary inputs are derived

from the results of the dynamic model of gait. The main point of the approach

that is advanced here is that direct dynamics provides instantaneous information

regarding the direction and magnitude of muscular forces, net moments at joints

and joint reaction forces. This information will be utilized in a stress analysis of

the segments that represent the various bones.

To illustrate the mathematical issues involved, a general formulation of the

relevant boundary value problem is first presented. In particular, let 12 denote a

body in R a with boundary P = F, (J Pal, Ft N Fd = 0. For u, x E R 3, let u(x, t)

denote the displacement of points x C fl at time t. The internal forces, more

precisely the stress in fl, may be described in terms of a tensor a that satisfies the

equation of motion

div(a) + f(x, t) = putt(x, t) x C 12. (7.1)
r

Here f(x, t) denotes externally applied forces. In the context of the biomechanical

situation consider here, 12 represents bone and f corresponds to weight or exter-

nal surface tractions which are derived from muscular forces. The displacement

field must satisfy the equation of motion subject to boundary conditions that are
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typically of the form,

an = t, x E Ft

u = po, xEFd

where n denotes an exterior unit vector to Ft. Additionally, one must specify

a constitutive relation that relates the states of stress to the deformation in ft.

Though bone is most accurately modeled as anisotropic material, preliminary work

has been carried out under the assumption that bone is isotropic. In this case the

components of stress, hi1, i,j = 1, 2,3 may be expressed in terms of displacements

by 'Hooke's Law' which states,

2/zv

In the above equation, # and v are elastic parameters and the 'strain' is defined

by

1 (Ou_ auj_ (7.3)
eij = \ Oxj + ] "

Specific problems that correspond to simplified modes of deformation will now be

presented.

In the event that a bone experiences a pure tensile or compressive deformation

and inertial effects are negligible, it suffices to solve the equation of equilibrium,

0( 0u)0---_ E(x)A(x)-O-xx + f(x.) = O, 0 < x < l (7.4)

where E(x) denotes Young's modulus, A(x) the cross sectional area of the bone

which has length l, f(x) is an applied surface traction, e(x) = _ is the strain and

a(x) = E(x)e(x) is the stress. This equation must be solved subject to boundary

conditions that reflect the joint reaction forces and specified displacements at the

joints.

In this study, the swing leg tibia is analysis at heel strike and flat foot. At these

two instances of gait, it is believed that the tibia can be described as undergoing
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Figure 7.1: Axial Stress Induced During Flat Foot (A) Note that the tibia is in

compression when muscular attachments are included in the analysis. (B) When

muscular attachments are neglected, the bone is in tension. Note that difference

in scales between (A) and (B).

a pure tensile or compressive deformation. The results in Figures 7.1 and 7.2

are finite element approximations to a boundary value problem that correspond

to solving equation (7.4) in which f(x) represents the surface tractions due to

muscular loading, in particular the tangential component of the vasti, hamstring

and dorsiflexor muscle forces. It was assumed that the distal end of the tibia was

fixed at heel strike and flat foot and the boundary condition at the knee joint was

given by the normal component of the joint reaction force, fo. In particular, the

boundary conditions are

u(1) = 0 E(0)A(0)DO-_(0) = fo. (7.5)

A point to be emphasized is that the inclusion of muscular effects in boundary

inputs significantly alter the distribution of stress throughout the bone. This con-

clusion is supported by other researchers (Duda, 1997; Lanyon and Smith, 1975;

Rybicki, 1972; Sharkley, 1995). With the inclusion of muscular attachments por-

tions of the bone axe in compression. This is in good qualitative and quantitative

agreement with the results of Lanyon (1974) and Duda (1997). This should be
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Figure 7.2: Axial Stress Induced During Heel Strike (A) Note that the tibia is in

compression when muscular attachments are included in the analysis. (B) When
muscular attachments are neglected, the bone is in tension. Note that difference

in scales between (A) and (B).

contrasted with the tensile stresses that are predicted when muscular tractions are

neglected (see Figure 7.2). The results are not surprising in view of the fact that

muscular forces often exceed body weight and thus dominate the loading on bones

both at the joints and at the muscle attachment area (Hardt, 1978).

Undoubtedly, more complex modes of deformation must be addressed in order

to accurately represent the stress in the bone. Ultimately we intend to utilize 3-D

finite element solvers to conduct the stress analysis of the skeletal components.

However, a more immediate approach that incorporates the effects of axial, bend-

ing and torsional loading will be based on a model of the skeletal system as a

configuration of beams in a 3-D structure referred to as a frame. The work done

by Toridis (1969) and Rybicki (1972) could serve as templates for this analysis.

In this approach, the require boundary inputs would include the distribution of

muscular forces along the bone, the normal and tangential components of the joint

reaction forces, and the moments at the joints. This data is accessible as output

of the dynamic gait model.



CHAPTER VIII

CONCLUSIONS

The goal of this dissertation was to define a new method by which the ef-

fects of musculature on stress development in the long bones can be ascertained

throughout a normal human activity such aswalking. As explained in Chapter II,

it wasa contention of this researchthat a forward analysis would provide a means

by which the instantaneous loading conditions, such asjoint reaction forces,joint

moments, and muscular forces, of bone could be derived throughout the gait cy-

cle. Since the musculotendon units are central to this approach, it was imperative

that a good muscle model be utilized, one that reflected the basic characteristics

of muscle while maintaining enough simplicity to render it useful in a simulation.

Chapter III explained the key elements that a muscle model should incorporate

while Chapter IV presented the model we felt was appropriate for motion simu-

lations. Once the muscle model was determined, we sought a representation of

the human body which included enough complexity to mimic the central issuesof

human gait. It was thought that the model developed by Yamaguchi succeeded

in this regard. Chapter V illustrated the construction the complete model and

the incorporation of the musclesas actuators in the system. Then Chapter VI

reflected on the performance of the model in simulating gait. We felt that the

simulations were indeed representative of human gait and that the derived loading

conditions were in a reasonablerange. Thus we proceededin Chapter VII to do a

finite element analysis of the tibia basedon these results. Although modeling the

bone as a uniaxial rod is quite simplified and only applicable during certain phases

of gait, it still succeededin showing the relevanceof the musculature on the stress

development in bones.

In conclusion, a method for including the effectsof muscular forces in a contin-

uum analysis of the long boneshas been presentedand illustrated for a simulation

of gait. The approach is multi-disciplinary in nature in that it hopes to bring

together the often separately researchedfields of musclemechanics, bone mechan-

ics and motion analysis. Although the example presented in this dissertation is

illustrative of the method, there are severalaspectsof the researchwhich should
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be improved before the model will have any real predictive value in accessing the

failure properties in bone.

A list of the major improvements which would complement this dissertation

follow:

A complete validation of the model needs to be performed. It is known

that EMG activities supports the use of the muscles utilized in this analysis,

and that the joint torques are in qualitative agreement with other torques

presented in the literature. However, issues such as the trajectory of the

center of mass and the joint reaction forces should be analyzed.

A more complex model of the body could be constructed. It would be advan-

tageous to have a model which is capable of simulating the whole gait cycle.

Another important improvement would be to break the torso segment into

two segments so that the tilting of the pelvis could be incorporated into gait.

There is a long list of possible complexities which could be added to make

the simulated gait more representative of human gait; however, a balance

should be maintained between the advantages of these complexities and the

computational cost associated with their inclusion.

Explore the implications of more complex and realistic models of musculo-

tendon dynamics. In particular the effects of muscle mass, muscle viscosity,

and contractile series elasticity should be examined. Modulation of these

components by activation, especially the contractile series element, should

be investigated.

Incorporate additional muscle groups into the gait model. A major obstacle

in this regard will be the computation of the neurological inputs required

to control the nlodel. It is anticipated that optimization techniques will

be essential to this effort. A computationally efficient method called the

pseudo-inverse method (Yamaguchi et al., 1995) has recently been developed

for performing dynamic optimizations of movement. This method should be

explored.
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• Although the above improvements would be beneficial to the analysis, the

most critical improvement will be in the implementation of a more complex

model of the bone. One possible direction would be to follow the work of

Toridis or Rybicki and modeling the bone as a beam which is transversely

isotropic. This would allow for the inclusions of shear deformations and

bending. It is also a model appropriate throughout the gait cycle, so that full

use could be made of the derived loading conditions. Another direction would

be to treat the whole skeletal structure as a space frame. Whatever model

is utilized a careful interpretation of the output of the dynamic gait model

is required to correctly interpret the loading conditions that are essential in

the boundary value problems.

• Characterize failure or damage in the skeletal system in terms of loading con-

ditions associated with muscular and joint inputs. Two important issues that

should be emphasized are muscle fatigue and pathological innervation. The

ultimate objective of this work would be to relate critical stress to muscular

failure.
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% File

% Problem

% Desription

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

% Note

%

walk.al [AUTOLEV 3]

7 link, 8 DOF model

This model will have torques at all joints due to tendons,

and ground reaction forces on both feet. It has two

auxiliary coordinates to produce reaction forces at the

shank joints in the normal direction.

Stance-side muscles added: Soleus, Gastrocnemius, Vasti,

Iliopsoas, and the Gluteus Medius/Minimus.

Swing-side muscles added: Dorsiflexors, Vasti,

Iliopsoas, and the Gluteus Medius/Minimus.

Tendon and activation dynamics are included.

All muscle functions will be added to the C-code as

functions. Thus all changes to code can be applied

directly.

All muscle values of Yamaguchi are used explicitly.

For muscle crossing the knee, the moment arm integration

technique is used to figure Lmt, Vasti, Ham, Gastro. Since

the Gastro is biarticulate across the knee and ankle, I used

vector addition to find Lmt, but I did utitlize the moment

arm data across the knee.

: All constants are entered.

% Physical Declarations: Newtonian, Frames, Particles, Bodies, Points

%

autoz on
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newtonian N

frames dd,ssft,sst,ssf,ssp

frames wwft,wwt,wwf, wwp

bodies a,b,c,d,e,f,g

frames sft,st,sf,sp

frames wft,wt,wf, wp

points ab,ba,bc,cb,cd,dc

points de,ed,ef,fe,fg,gf

points ha,hg

points ta,tg
%.

% Newtonian reference frame

% intermediate frames

% intermediate frames

% 7 link model

% reference frame for stance muscles

% reference frame for swing muscles

% adjoining points

% adjoining points

% heels of stance and swing foot

% toes of stance and swing foot

% Muscle points in the stance leg

%

points so,si

points gao,gai

points vso,vsi,vsei

points iso,isi,iseo

points gmso,gmsi

%

% soleus

% gastrocnemius

% vasti

% iliopsoas

% gluteus medius/minimus

% Muscle points in swing leg

%

points doo,doi,doeo

points ho,hi

points vwo,vwi,vwei

points iwo,iwi,iweo

points gmwo,gmwi

%

% dorsiflexors

% hamstrings

% vasti

% iliopsoas

% gluteus medius/minimus

% Mathematical Declarations: Variables, Constants, Specified, Mass

%

variables u12'

variables q8'

variables FS',FGA',FVS'

% generalized speeds(8)

% generalized coordinates; derivatives

% Force of muscles in stance leg
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variables FIS',FGMS'

variables FDO',FVW',FH'

variables FIW',FGMW'

variables lmth',lmtvs',lmtvw'

constants g

constants w

constants lal,la3,11al,Ua3

constants Ib,llb

constants Ic,llc

constants Id,lld

constants le=lc,lle=lcdlc

constants lf=lb,Uf=lb-Ub

constants lgl=la3,1g3-1al

% Force of muscles in swing leg

% Lengths of muscles spanning the knee

% gravity

% total weight

% stance-leg foot

% stance-leg shank

% stance-leg thigh

% trunk

% swing-leg thigh

% swing-leg shank

% swing-leg foot

constants llgl=lla3, llg3=lal-llal

mass a=ma,b=mb,c=mc,d=md,e=me,f--mf, g=mg

mertia a, ial,ia2,ia3 % stance-leg foot

inertia b,

mertia c,

inertia d,

mertia e,

inertia f, ifl=ibl,if2=ib2,if3=ib3

mertia g, igl=ial,ig2=ia2,ig3=ia3

%

ibl,ib2,ib3

icl,ic2,ic3

idl,id2,id3

iel =ic 1,ie2 =-ic2,ie3 =ic3

% stance-leg shank

% stance-leg thigh

% trunk

% swing-leg thigh

% swing-leg shank

% swing-leg foot

% Geometry Relating the Segments

%

simprot(n,a,-2,ql)

simprot(n,b,-2,q2)

simprot(n,c,-2,q3)

simprof(n,dd,l,q4)

simprot(dd,d,-2,q5)

simprot(dd,e,2,q6)

simprot(dd,f,2,q7)

% pelvic list
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simprot(dd,g,2,qS)

simprot (a,ssft,2,pi-34*pi/180)

simprot(ssft,sft,l,pi/2)

simprot (b,sst,-3,pi/2)

simprot (sst,st,2,pi/2)

simprot (c,ssf,-3,pi/2)

simprot (ssf,sf,2,pi/2 )

simprot (d,ssp,-3,pi/2)

simprot (ssp,sp,2,pi/2)

slmprot(d,wwp,-3,pi/2)

sxmprot(wwp,wp,2,pi/ 2 )

slmprot (e, wwf, 3, pi/2)

slmprot (wwf, wf,-2,pi/2)

slmprot(f, wwt,3,pi/2)

slmprot(wwt,wt,-2,pi/2)

slmprot(g,wwft,-2,34*pi/lS0+pi/2)

slmprot(wwft,wft,l,pi/2)

%-

% stance foot

% stance tibial

% stance femoral

% stance pelvic

% swing pelvis

% swing femoral

% swing tibial

% swing foot

% Set up geometry for stance foot "a"

%.

p_ta_ab>=lal*al>

p_ab_ha>=la3*a3>

p_ta_ao> =llal* al > + lla3*a3 >

%

% center of mass

% Set Up Geometry for Stance Shank "b"

%.

p_ab_ba>=0>

p_ba_bc>=lb*bl>

p_ba_bo>=llb*bl >

%-

% center of mass

% Set Up Geometry for Stance Thigh "c"

%.
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p_bc_cb>=O>

p_cb_cd>=Ic*cl>

p_cb_co>=llc*el>

%

% center of mass

% Set Up Geometry for Stance Trunk "d"

%

p_cd_dc>=O>

p_dc_de>=ld*d2>

p_dc_do > =. 5*ld*d2 > +lld*d 1 >

%

% center of mass

% Set Up Geometry for Swing Thigh "e"

%

p_de_ed>=O>

p_ed_ef>=le*el>

p_ed_eo >--lie*el >

%

% center of mass

% Set Up Geometry for Swing Shank "f"

%

p_ef_fe>=O>

p_fe_fg> =lf*fl >

p_fe_fo>=llf*fl >

%

% center of mass

% Set up Geometry for Swing Foot "g"

%

p_fg_gf>=0>

p_gf_hg>=lgl*gl>

p_gf_tg>=lg3*g3>

p_gf_go>=llgl*gl>+llg3*g3>

%

% center of mass

% Soleus Stance Muscle

%

p_ba_so> =-.0292"st 1 > +. 2467"st2 > +.0006*st3 >
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p_ba_si>=-.0365*sft 1 >-.0428"sff2 > +.0056*sft3 >

%

% Gastrocnemius Stance Muscle

%

p_cb_gao>=-.O203*sfl > +.O071*sf2>-.OO73*sf3>

p_ba_gai > =-. 0368" sft 1>-. 0429" sft 2 > +. O028 * sft3 >

%

% Vasti Stance Muscle

%

p_cb_vso> = .0106"sfl > +. 2026"sf2 > + .0205 * sf3 >

p_ba_vsi>=.0170*st 1 >+.3930*st2>-.0006*st3>

%

% Iliopsoas Stance Muscle

%

p_cd_iso > =.O075*spl >+. 1350"sp2 >-.04*sp3 >

p_bcisi>=-.O180*sfl>+ .335 l*sf2> +.0116*sf3>

p_cd__iseo > =. 0260*sp 1 > +. 0293 *sp2 >- .0042 *sp3 >

%

% Gluteus Medius Stance Muscle

%

p_dc_gmso>=-.O155*spl>+.O785*sp2 >+.0076"sp3 >

p_cb_gmsi> =-.O159*sfl >+.3873"sf2 > +.0589'sf3>

%

% Dorsiflexors Swing Muscle

%

p_fg_doo>=-.0155*wt 1> +.2175"wt2>+.0134'wt3>

p_fg_doi > =. 1035*wft I >-.052*wft 2 >

p_fg_doeo> =.0259"wt 1 >+.0 l17*wt2 >-.0093"wt3>

% r

% Hamstring Swing Muscle

%

p_de_ho> =-.0409*wpl >-.0455*wp2>-.014*wp3>
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p_fg hi>=-.017*wtl >+ .38"wt2>+ .0073"wt3>

%

% Vasti Swing Muscle

%

p_ef_vwo > =.0106" wfl > +. 2026"w12 > +.0205"wf3 >

p_fg_vwi> =.O170*wt 1> +.3930*wt2>-.OOO6*wt3>

%

% niopsoas Swing Muscle

%.

p_de_iwo>=.0075*wpl > +.1350*wp2>-.04*wp3>

p_efiwi>=-.0180*wfl>+.3351*wf2>+.0116*wf3>

p_deiweo>=.0260*wpl >+.0293*wp2>-.0042*wp3>

%

% Gluteus Medius Swing Muscle

%

p_de_gmwo> =-.0155*wpl > +.0785"wp2 > +.0076"wp3 >

p_ef_gmwi>=-.0159*wfl > +.3873"wf2> +.0589"wf3>

%

% Kinematic Differential Equations

%

ql'=ul

q2'=U2

q3'=U3

q4'=U4

q5'=U5

q6'=U6

q7'=U7

q8'=U8

% .

% Angular Velocity of the Segments

%

w_am>=-ql'*n2>
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w_b_n>=-q2'*n2>

w_c_n>=-q3'*n2>

wAd_n>=q4'*nl>

w_d_dd>=-q5'*dd2>

w_dm>=w-d-n>

w_e_dd>=q6'*dd2>

w_e..II>-'w-e-ll>

w_f_dd>=qT'*dd2>

w_fn> =w..L-n>

w_g_dd>=q8'*dd2>

w_g_.n> =w-g-n>

%

% Velocities of Points

.

v_ta_n>=O>

v2pts(n,a,ta,ab)

v2pts(n,a,ta,ao)

v2pts(n,a,ab,ha)

%

v_ba_n>=v_ab-n>

v2pts(n,b,ba,bo)

v2pts(n,b,ba,bc)

%

v_cb_n>=v_bc-n>

v2pts(n,c,cb,co)

v2pts(n,c,cb,cd)

%

v_dc_n>=v_cd-n>

v2pts(n,d,dc,do)

v2pts(n,d,dc,de)

%

v_ed_n>=v_de-n>
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v2pts(n,e,ed,eo)

v2pts(n,e,ed,ef)

%

vA'e_n>=v_ef_n> +u9*fl> + ul0*f3>

auxiliary[1]=u9

auxiliary[2]=ulO

v2pts(n,f, fe,fo)

v2pts(n,f, fe,fg)

%

v_gf_n> =v_fg_n> +u 1 l*fl >+u12*f3>

auxiliary/3]=ul 1

auxiliary[4]=u12

v2pts(n,g,gf, go)

v2pts(n,g,gf, tg)

v2pts(n,g,gf, hg)

%.

% Motion Constraints

%

constrain(auxiliary[uO,ulO,ull,u121)

%

%Forces

%

Gravity(-g*n3>)

%

% Ground Reaction Forces and Torques at Heels

%

specified zheela',zheelg',delta'

% The following functions will needed to be added to the C-code.

specified fa3,fgl,fg3,tt

variables tabt,tbct,tcdt,tdet,teft,tfgt

Variables rfe3,rfg3

%
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% The following functions will not be embedded in Z variables.

zee_not= [tabt,tbct,tcdt,tdet,teft,t fgt,fa3,fgl,fg3,tt,rfel,rfe3,rfgl,

rfg3,FS,FGA,FVS,FIS,FGMS,FGMW,FIW,FVW,FH,FDO]

%

zheela=dot(p_ta_ha>,n3>)

zheela'=dt(zheela)

zheelg=dot (p_ta_hg>,n3>)

zheelg'=dt (zheelg)

heelnl =dot (v_hg_.n > ,nl >)

• delta=-q8+2.164

delta'=dt(delta)

%

% Ground reaction force on stance toe.

Force_ha>+=fa3*n3>

%

% Ground reaction force on swing heel.

Force__hg > + =fg 1 *n 1 > +fg3*n3 >

%

_o Torque on swing foot.

Torque_g>+=tt*dd2>

%

% Passive Joint Moments

%

% The following variables specify the passive joint moments.

Constants kab4,kbc4,kcd4,kde4,kef4,kfg5

Constants theta_ab2,theta_bc2,theta_cd2

Constants theta_de2,t heta_ef2,theta_fg2

Constants cabl,cbcl ,ccdl,cde 1,cefl,cfgl

% r

% Joint angles defined.

theta_ab=ql-q2 + (34"pi/180)

theta_bc=q2-q3



92

theta_cd=q3-q5

theta_de=pi-(q5+q6)

theta_ef=q6-q7

theta_.fg-(124*pi/180)-(q8-qT)
%

% Passive torques defined.

tabt-(kabl*exp(-kab2*(theta_ab-theta_ab2))-

kab3*exp(,kab4*(theta_abl-theta_ab))-cabl*dt(theta_ab))

t bct = (kbcl*exp(-kbc2* (theta_bc-theta_bc2))-

kbc3*exp(-kbc4*(theta_bcl-theta_bc))-cbcl*dt(theta_bc))

tcdt= (kcd 1*exp(-kcd2* (theta_cd-theta_cd2))-

kcd3*exp(-kcd4* (theta_cdl-theta_cd))-ccd l*dt (theta_cd))

tdet= (kdel *exp(-kde2* (theta_de-theta_de2))-

kde3*exp(-kde4* (theta_de 1-theta_de))-cdel *dt(theta_de))

teft = (kefl*exp(-kef2* (thet a_ef-thet a_ef2))-

kef3*exp(-kef4*(theta_efl-theta_ef))-cefl*dt(theta_ef))

tfgt=(kfgl*exp(-kfg2*(theta_fg-theta_fg2))_

kfg3*exp(-kfg4*(theta_fgl-theta_fg))-cfgl*dt(theta_fg))

%

torque(a/b,tabt*n2>)

torque(b/c,tbct*n2>)

torque_c>-=tcdt*n2>

torque_d> +=tcdt*dd2 >

torque(e/d,tdet*dd2>)

torque(f/e,teft*dd2 >)

torque(g/f, tfgt*dd2>)

%

%

% Muscles

%-

%

% None of the lengths nor forces are normalized.
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% Constants axe input.

% These functions will be specified in the C code

%

Specified fla,flp,fv,K,cs,Lt,Lm,mrv,mrh,mrg

% time constant

Constants tan

%

% Soleus muscle on stance leg

%

Specified lmtso',lmso,ltso,lwso,vmtso,vmso,vtso,csso,aso,faso,ms

Constants F0mso,L0mso,Lstso,Paso

%

ms-=-dot (cross(p_ab_so> ,unitvec(p_so_si> )),n2> )

lwso= L0mso*sin(Paso)

lmtso=mag(p_so_si>)

vmtso=dt(lmtso)

ltso=Lstso*Lt

lmso=Lm

CSSO--CS

%

faso=((FS/csso) - FOmso*flp) / ( FOmso*aso*fla )

vmso=(LOmso/tau)*fv/csso

vtso=vmtso-vmso

FS'=(F0mso/lstso)*K*(vtso)

%

torque(a/b,FS*ms*n2>)

%

% Gastrocnemis muscle on stance leg

%

Specified lmtga',lmga,ltga,lwga,vmtga,vmga,vtga,csga,aga,faga,mgak,mgaa

Constants F0mga,L0mga, Lstga,Paga

%
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mgak=-mrg*(q3-q2)

mgaa=dot(cross(p_abdgao>,unitvec(p-gao-gai>)),n2>)

lwga=L0mga*sin(Paga)

lmtga=mag(p_gao_gai>)

vmtga=dt(lmtga)

ltga-Lstga*Lt

lmga=Lm

csga=cs

%

faga=((FGA/csga)-F0mga*flp)/(F0mga*aga*fla)

vmga=(L0mga/tau)*fv/csga

vtga=vmtga-vmga

FGA'=(F0mga/Lstga)*K*(vtga)

%

torque(a/b,FGA*mgaa*n2>)

t orque(b/c,FG A* mgak* n2 > )

%

% Vasti muscle on stance leg

%

Specified lmvs,ltvs,lwvs,vmtvs,vmvs,vtvs,csvs,avs,favs,mvs

Constants F0mvs,L0mvs,Lstvs,Pavs

%

mvs=mrv*(q3-q2)

lwvs=L0mvs*sin(Pavs)

lmtvs'--mrv*(q3-q2)*(u3-u2)

vmtvs=lmtvs'

ltvs=Lstvs*Lt* (lmtvs-lmvs)

lmvs=Lm

CSVS_-CS ..

%

favs=((FVS/csvs)-FOmvs*flp)/(FOmvs*avs*fla)

vmvs=(L0mvs/tan)*fv/csvs
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vtvs--viIltvs-vmvs

FVS'=(F0mvs/Lstvs)*K* (vtvs)

%

torque(b/c,FVS*mvs*n2 >)

%

% lliopsoas muscle on stance leg

%

Specified lmtis',lmis,ltis,lwis,vmtis,vmis,vtis,csis,ais,fais

Specified misddl,misdd2,misn2

Constants F0mis,L0mis,Lstis,Pais

%

misdd2=dot (cross(p_cdAseo>,unitvec(p_iseoAsi>)),dd2 >)

misdd 1= dot (cross (p_cd iseo >, unit vec (p AseoAsi > ) ), dd 1 > )

misn2 =dot (cross(p_cdAseo> ,unitvec(piseoisi >) ),n2 >)

lwis=L0mis*sin(Pais)

lmtis-- (mag (p_isoiseo>) +mag(p_iseoisi> ))

vmtis=dt (lmtis)

ltis=Lstis*Lt

Imis=Lm

CSiS=CS

%

fais=((FIS/csis)-FOmis*flp)/(FOmis*AIS*fla)

vmis=(LOmi / tan)*fv/
vtis=vmtis-vmis

FIS'=(F0mis/lstis)*g*(vtis)

%

torque_c> +=-FIS*misn2*n2>

torque_d>+=FIS*misdd2*dd2>

torque_d> + =FIS*misdd l*ddl >

%

% Gluteus Medius/Minimus muscle on stance leg

%
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Specified lmtgms',lmgms,ltgms,lwgms,vmtgms,vmgms,vtgms

Specified csgms,agms,fagms

Specified mgmsdd2,mgmsdd 1,mgmsn2

Constants F0mgms,L0mgms,Lstgms,Pagms

%

mgmsdd2=dot (cross(p_cd_gmso>,unitvec(p_gmso_gmsi>)),dd2 >)

mgmsddl=dot(cross(p_cd_gmso>,unitvec(p_gmso_gmsi>)),ddl>)

mgmsn2=dot(cross(p.cd_gmso>,unitvec(p_gmso_gmsi>)),n2>)

lwgms=L0mgms*sin(Pagms)

lmtgms=mag(p_gmso_gmsi>)

vmtgms=dt (lmtgms)

ltgms=Lstgms*Lt

lmgnm=Lm

csgms=cs

%

fagms=((FGMS/csgms)-FOmgms*flp)/(FOmgms*AGMS*fla)

vmgms--(LOmgms/tau)*fv/csgms

vtgms=vmtgms-vmgms

FGMS'=(F0mgms/lstgms)*K*(vtgms)

%

torque_c>+=-FGMS*mgmsn2*n2>

torque _d > + = FG M S * mgmsdd 2" dd 2 >

torque_d>+=FGMS*mgmsddl*ddl>

%

% Dorsiflexors muscles on swing leg

%

Specified lint do',lmdo,ltdo,lwdo,vmt do,vmdo,vt do,csdo,ado, fado,mdo,fsdo

Constants F0mdo,L0mdo,Lstdo,Pado

%

mdo=dot (cross(p_fg_doeo> ,unitvec(p_doeoAoi>)),dd2> )

lwdo=L0mdo*sin(Pado)

lmtdo= (mag(p_doo_doeo >) + mag(p_doeo_doi> ))
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vmtdo=dt(lmtdo)

ltdo=Lstdo*Lt

lmdo=Lm

csdo:cs

%

fado-((FDO/csdo)-F0mdo*flp)/(F0mdo*ADO*fla)

vmdo=(L0mdo/tau)*fv/csdo

vtdo=vmtdo-vmdo

FDO'=(F0mdo/Lstdo)*g*(vtdo)

%

fsdo=(FDO)*dot(fl>,unitvec(p_doeo_doi>))

%

torque (g/f, FDO*mdo*dd2 >)

%

% Hamstring muscle in swing leg

%

Specified lmh,lth,lwh,vmth,vmh,vth,csh,ah,fah,mhk,mhh,fsh

Constants F0mh,L0mh,Lsth,Pah

%

mhk=mrh*(qT-q6)

mhh=dot (cross(p_de_ho> ,unitvec(p_ho_hi>)),dd2 >)

lwh=L0mh*sin(Pah)

lmth'=mrh*(qT-q6)* (uT-u6)

vmth=lmth'

lth=Lsth*Lt* (Imth-lm)

lmh--Lm

csh=cs

%

fah=((FH/csh)-F0mh*tip)/(F0mh*AH*fla)

vmh= (a0mh/tau)*fv/csh

vth=vmth-vmh

FH'=(F0mh/Lsth)*K*(vth)
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%

fsh-FH*dot(fl>,unitvec(p-ho_hi>))

%

torque(f/e,Ftt*mhk*dd2>)

torque(e/d,FH*mhh*dd2 >)

%

% Vasti muscle on swing leg

%

Specified lmvw,ltvw,lwvw,vmtvw,vmvw,vtvw,csvw,avw,favw, mvw,fsvw

Constants F0mvw,L0mvw,Lstvw,Pavw

%

mvw=mrv*(q7-q6)

lwvw=LOmvw*sin(Pavw)

lmtvw'=mrv*(q7-q6)*(u7-u6)

vmtvw=lmtvw'

ltvw=Lstvw*Lt* (lmtvw-lmvw)

lmvw=Lm

CSVW_CS

%

fa,,w=((FVW/csvw)-FOmvw*ftp)/(FOmvw* ,'w*fta)
vmvw--(L0mvw/tau)*fv/csvw

vtvw--vmtvw-vmvw

FVW'=(F0mvw/Lstvw)*K*(vtvw)

%

fsvw=FVW*dot(fl>,unitvec(p-vwo-vwi>))

%

torque(f/e,FVW* mvw* dd2 >)

%

% Iliopsoas muscle on swing leg

%

Specified lmtiw',lmiw,ltiw,lwiw,vmtiw,vmiw,vt iw,csiw,aiw,faiw,miw

Constants F0miw,L0miw,Lstiw,Paiw
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%

miw=dot(cross(p_de_iweo>,unitvec(piweo_iwi>)),dd2>)

lwiw=LOmiw*sin (Paiw)

lmtiw= (mag(piwo_iweo > ) +mag(p_iweoiwi> ))

vmtiw=dt(lmtiw)

ltiw=Lstiw*Lt

lmiw=Lm

CSiW_--_CS

%

faiw=((FIW/csiw)-F0miw*flp)/(F0miw*AIW*fla)

vmiw=(L0miw/tau)*fv/csiw

vtiw=vmtiw-vmiw

F1W'=(F0miw/Lstiw)*U*(vtiw)

%

torque(e/d,FIW*miw*dd2 >)

%

% Gluteus Medius/Minimus muscle on swing leg

%

Specified lmtgmw',lmgmw,ltgmw,lwgmw,vmtgmw,vmgmw,vtgmw

Specified csgmw,agmw,fagmw,mgmw

Constants F0mgmw,L0mgmw,Lstgmw,Pagmw

%

mgmw---dot (cross(p _de_gmwo > ,unitvec(p _gmwo.gmwi> ) ),dd2> )

%

lwgmw=L0mgmw*sin(Pagmw)

lmtgmw=mag(p_gmwo_gmwi>)

vmtgmw=dt (lmtgmw)

ltgmw=Lstgmw*Lt

lmgmw=Lm

csgmw=cs

%

fagmw=((FGUW/csgmw)-F0mgmw*flp)/(F0mgmw*iGiW*fla)
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vmgmw=(LOmgmw/tau)*fv/csgmw

vtgmw=vmtgmw-vmgmw

FGMW'=(F0mgmw/estgmw)*K*(vtgmw)

%

torque(e/d,FGMW*mgmw*dd2>)

%

% Forces at the ankle and knee of the swing side shank

%

Force(ef/fe,rfe l*fl > +rfe2*f2> +rfe3*f3>)

Force(fg/gf, rfgl *fl >+rfg2*f2> +rfg3*f3> )

%

Contributions=fr 0

%

% Segmental Torques

%

torque_a>

torque_b>

torque_c>

torque_d>

torque_e>

torque_f>

torque_g>

%.

% Equations of Motion

%-

zero=fr()+frstar 0

kane(rfel,rfe3,rfg 1,rfg3)

%

% Expression to be Output by the C Code

%

output T,ql

output T,q2
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output T,q3

output T,q4

output T,q5

output T,q6

output T,q7

output T,q8

output etc.

%

% Units Constants for C Code

%.

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

units

[t]--S

[tau]=s

[ql,q2,q3,q4,q5,q6,qT,qS]--deg

[ul,u2,u3,u4,u5,u6,uT,uS]=r/s

[FS,FGA,FVS,FIS,FGMS,FDO,FVW,FH,FIW,FGMW] =N

[lal ,la3,Ual ,Ua3,1b,llb,lc,llc,ld,lld] =m

[ma,mb,mc,md,me,mf, mg,w]-kg

[ial,ia2,ia3,ibl,ib2,ib3,icl,ic2,ic3,idl,id2,id3]=kg*m2

[cabl,cbcl,ccdl,cdel,cefl,cfgl]=(S*s)/(r*m)

[kabl,kab3,kbcl,kbc3,kcdl,kcd3,kdel,kde3,kefl,kef3,kfgl,kfg3]=N*m

[kab2,kab4,kbc2,kbc4,kcd2,kcd4,kde2,kde4,kef2,kef4,kfg2,kfg4] = 1/r

It heta_abl,theta_ab2,theta_bcl,theta_bc2,theta_cd 1,thet a_cd2]=r

[theta_del,theta_de2,theta._efl,theta_ef2,theta_fgl,theta_fg2]=r

{d=mls 
[F0mSo,F0mGA,F0mVS,F0mIS,F0mGMS]=N

[F0mDO,F0mVW,F0mH,F0mIW,F0mGMW]=N

[L0mSo,L0mGA,L0mVS,L0mIS,L0mGMS] =m

[L0mDO,L0mVW,L0mH,L0mIW,L0mGMW]=m

[LstSo,LstGA,LstVS,LstIS,LstGMS] =m

[LstDO,LstVW,LstH,LstIW,LstGMW]=m

[PaSo,PaGA,PaVS,PaIS,PaGMS]=deg

[PaDO,PaVW,PaH,PaIW,PaGMW] =deg
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mput

input

input

input

input

input

mput

input

input

input

input

input

input

input

mput

input

input

mput

input

mput

input

input

input

input

input

input

mput

g--9.81

ial =.OO2,ia2=.OO8,ia3=.OO9,ibl=.O19,ib2--.O65,ib3=.065

ic1=.080,ic2=. 126,ic3=.126,idl =.764,id2=3.407,id3=3.297

lal=.175,1a3=.llS,lb=.435,1c-.410,1d--.172,11al=.l,lla3=.0295

llb=.247,11c=.227,Ud--.343,ma=l. 1,mb=3.75,mc-7.58,md=51.22

me=7.58 ,mr=3. ?5,rag= 1.1

cab l-.943,cbcl =3.17,ccdl = l.O9,cde l- l.O9,cefl =3.17,cfg1=.943

kab l- 2,kab 2=5,kab3=9 ,kab4--5

kbcl--3.1,kbc2=5.9,kbc3=10.5,kbc4=ll.8

kcdl =2.6,kcd2=5.8,kcd3=8. 7,kcd4= l.3

kdel =2.6,kde2 =5.8 ,kde3=8.7,kde4-- 1.3

kefl=3.1,kef2=5.9,kef3=lO.5,kef4=ll.8

kfgl = 2,kfg2 = 5,1dg3=9,kfg4=5

theta_abl=l.92,theta_ab2=l.047,theta_bcl=0,theta_bc2=-l.92

theta_cdl=l.92,theta_cd2=.1744,theta_del=l.92,theta_de2=.1744

theta_efl=0,theta_ef2=-l.92,theta_fgl=l.92,thetaJg2=l.047

FOmso=35 99 ,LOmso=. O243,Lstso=.2 ?,Paso= 2 5

F0mga= 1423, L0mga=. 0482, Lstga=. 4250,Paga= 14.8

F0mvs=6482,L0mvs=. 1096,Lstvs=.2250,Pavs=4.5

F0mis=1474,L0mis=.1269,Lstis=.0850,Pais=7

F0mgms=2686,L0mgms=.0760,Lstgms=.0355,Pagms=10.4

F0mdo= 1400,L0mdo=.1009,Lstdo=.2250,Pado=6.9

FOmvw=6482,LOmvw=.lO96,Lstvw=.2250,Pavw=4.5

F0mh=2348,L0mh=.1065,Lsth=.3850,Pah=8.7

F0miw=1474,L0miw=. 1269,Lstiw=.0850,Paiw=7

FOmgmw=2686,LOmgmw=.O760,Lstgmw=.O355,Pagmw= lO.4

tinitial=0,tfinal=.6,integstp=.01

.

% C C_ode generation for numerical solution

digits 6

code dynamics() walk.c, subs


